Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Faraday Discuss ; 230: 152-171, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950048

RESUMO

The managed mineralisation of CO2 on mineral substrates has significant potential to mitigate CO2 emissions to atmosphere, using processes that are analogous to the formation of limestone in nature. High-temperatures and pressures or ambient conditions can be applied in processes that compare with the natural chemical, hydrothermal or biological formation of limestone. In the UK, recent policy developments recognise the potential of carbon utilisation and a reduction target of 40 Mt by 2030 has been set. In the present work, the analogies between natural and managed carbonate-production are briefly reviewed and the potential gains for mineralisation technology employing flue-gas as a direct source of CO2 are presented. With reference to selected UK solid waste arisings, our high-level analysis indicates mineralisation is capable of permanently sequestrating 1.2 Mt per year of CO2 in carbonated construction products. At a European level, nearly 7.8 Mt of CO2 can be managed in the same way. If indicative indirect CO2 savings are also considered, maximum total CO2 reductions of up to 3 and 30 Mt per year are possible in the UK and Europe, respectively. In respect of the UK's CCUS-led CO2 reductions for the 8 years to 2030, our high-level assessment suggests that up to 24 Mt, representing 60% of the 'target', may be met by the mineralisation of selected industrial process residues.

3.
Sci Rep ; 10(1): 13801, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796877

RESUMO

This work is part of a study of different types of plant-based biomass to elucidate their capacity for valorisation via a managed carbonation step involving gaseous carbon dioxide (CO2). The perspectives for broader biomass waste valorisation was reviewed, followed by a proposed closed-loop process for the valorisation of wood in earlier works. The present work newly focusses on combining agricultural biomass with mineralised CO2. Here, the reactivity of selected agricultural biomass ashes with CO2 and their ability to be bound by mineralised carbonate in a hardened product is examined. Three categories of agricultural biomass residues, including shell, fibre and soft peel, were incinerated at 900 ± 25 °C. The biomass ashes were moistened (10% w/w) and moulded into cylindrical samples and exposed to 100% CO2 gas at 50% RH for 24 h, during which they cemented into hardened monolithic products. The calcia in ashes formed a negative relationship with ash yield and the microstructure of the carbonate-cementing phase was distinct and related to the particular biomass feedstock. This work shows that in common with woody biomass residues, carbonated agricultural biomass ash-based monoliths have potential as novel low-carbon construction products.

4.
J Cell Physiol ; 235(12): 9922-9932, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32537823

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the one of the most frequently found cancers in the world. The aim of the study was to find the genes responsible and enriched pathways associated with HNSCC using bioinformatics and survival analysis methods. A total of 646 patients with HNSCC based on clinical information were considered for the study. HNSCC samples were grouped according to the parameters (RFS, DFS, PFS, or OS). The probe ID of these 11 genes was retrieved by Affymetrix using the NetAffx Query algorithm. The protein-protein interaction (PPI) network and Kaplan-Meier curve were used to find associations among the genes' expression data. We found that among these 11 genes, nine genes, CCNA1, MMP3, FLRT3, GJB6, ZFR2, PITX2, SYCP2, MEI1, and UGT8 were significant (p < .05). A survival plot was drawn between the p value and gene expression. This study helped us find the nine significant genes which play vital roles in HNSCC along with their key pathways and their interaction with other genes in the PPI network. Finally, we found the biomarker index for relapse time and risk factors for HNSCC in cancer patients.


Assuntos
Biomarcadores Tumorais/genética , Recidiva Local de Neoplasia/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Transcriptoma/genética , Algoritmos , Alphapapillomavirus , Biologia Computacional , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/virologia , Prognóstico , Mapas de Interação de Proteínas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia
5.
Sci Rep ; 10(1): 958, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969647

RESUMO

The present work investigates biomass wastes and their ashes for re-use in combination with mineralised CO2 in cement-bound construction products. A range of biomass residues (e.g., wood-derived, nut shells, fibres, and fruit peels) sourced in India, Africa and the UK were ashed and exposed to CO2 gas. These CO2-reactive ashes could mineralise CO2 gas and be used to cement 'raw' biomass in solid carbonated monolithic composites. The CO2 sequestered in ashes (125-414 g CO2/kg) and that emitted after incineration (400-500 g CO2/kg) was within the same range (w/w). The CO2-reactive ashes embodied significant amounts of CO2 (147-424 g equivalent CO2/kg ash). Selected ashes were combined with raw biomass and Portland Cement, CEM 1 and exposed to CO2. The use of CEM 1 in the carbonated products was offset by the CO2 mineralised (i.e. samples were 'carbon negative', even when 10% w/w CEM 1 was used); furthermore, biomass ashes were a suitable substitute for CEM 1 up to 50% w/w. The approach is conceptually simple, scalable, and can be applicable to a wide range of biomass ashes in a closed 'emission-capture' process 'loop'. An extrapolation of potential for CO2 offset in Europe provides an estimate of CO2 sequestration potential to 2030.

7.
Environ Monit Assess ; 188(9): 507, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27497960

RESUMO

This study was conducted to evaluate the effect of equilibration time on adsorption of zinc [Zn(II)] and nickel [Ni(II)] on pure and modified chitosan beads. The initial adsorption of Zn(II) was high on molybdenum (Mo)-impregnated chitosan beads (MoCB) during the initial 60 min. However, after 240 min, Zn(II) adsorption occurred more on single super phosphate chitosan beads (SSPCB), followed by monocalcium phosphate chitosan beads (MCPCB), untreated pure chitosan beads (UCB), and MoCB. Similarly, Ni(II) adsorption was greatest on MoCB during the initial 60 min. At the conclusion of the experiment (at 240 min), the greatest adsorption was occurred on MCPCB, followed by MoCB, UCB, and SSPCB. Chemical sorption and intra-particle diffusion were probably the dominant processes responsible for Zn(II) and Ni(II) sorption onto chitosan beads. The results demonstrated that modified chitosan beads were effective in adsorbing Zn and Ni and hence, could be used for the removal of these toxic metals from soil.


Assuntos
Quitosana/química , Modelos Teóricos , Níquel/análise , Zinco/análise , Adsorção , Difusão , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Cinética , Níquel/química , Solo/química , Zinco/química
8.
Sci Total Environ ; 468-469: 1162-71, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24184491

RESUMO

Economically important mining operations have adverse environmental impacts: top soil, subsoil and overburden are relocated; resulting mine spoils constitute an unaesthetic landscape and biologically sterile or compromised habitat, and act as source of pollutants with respect to air dust, heavy metal contamination to soil and water bodies. Where such spoils are revegetated, however, they can act as a significant sink for atmospheric carbon dioxide (CO2) through combined plant succession and soil formation. Revegetation, drainage, reprofiling and proper long term management practices help recapture carbon, improve soil quality and restore the soil organic matter content. A survey along an age gradient of revegetated mine spoils of 19 years in Singrauli, India by the authors showed an accumulation of total C in total plant biomass, mine soil and soil microbial biomass by 44.5, 22.9 and 1.8 t/ha, respectively. There was an increase in total sequestered C by 712% in revegetated mine spoils after 19 years, which can be translated into annual C sequestration potential of 3.64 t Cha(-1) yr(-1). Carbon sequestered in revegetated mine spoil is equivalent to 253.96 tonnes/ha capture of atmospheric carbon dioxide (CO2). This indicates that mine spoil can act as a significant sink for atmospheric CO2. Annual C budget indicated 8.40 t Cha(-1) yr(-1) accumulation in which 2.14 t/ha was allocated to above ground biomass, 0.31 t/ha in belowground biomass, 2.88 t/ha in litter mass and 1.35 t/ha in mine soil. This shows that litter mass allocation is much important in the revegetated site. Decomposition of root and litter mass contributes C storage in the mine soil. Therefore, revegetation of mine soils is an important management option for mitigation of the negative impacts of mining and enhancing carbon sequestration in mine spoils.


Assuntos
Biodegradação Ambiental , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Minas de Carvão , Poaceae/crescimento & desenvolvimento , Resíduos , Índia , Modelos Biológicos , Nitrogênio/metabolismo , Poaceae/metabolismo , Microbiologia do Solo , Clima Tropical
9.
Environ Manage ; 50(4): 695-706, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22842748

RESUMO

Plant available nitrogen, belowground (root) biomass, soil nitrogen (N) mineralization and microbial biomass N (MBN) were studied for 12 years at the interval of 2 years (0, 2, 4, 6, 8, 10 and 12 years) and mine dump stability at the intervals of 6 years (0, 6 and 12 years) after re-vegetation on coal mine spoil site. Plant available nitrogen in revegetated mine spoil ranged from 4.51 to 6.59 µg g(-1), net N-mineralization from 1.87 to 13.85 µg g(-1) month(-1), MBN from 10 to 22.63 µg g(-1), and root biomass from 28 to 566 g(-2). Mining activity has caused a change in soil characteristics including plant available nutrients like nitrate-N, ammonium-N and phosphate-P by 70, 67, and 76 %, respectively, N-mineralization by 93 %, root biomass values by 97 % and MBN values by 91 % compared to forest ecosystems. Revegetation of mine spoil produced increase in root biomass values by 1.3, 7.6 and 17.2 times, mineral N values by 1.22, 1.43 and 1.79 times, N-mineralization values by 1.8, 5.2 and 12.6 times and MBN values by 1.6, 2.0, and 3.4 times in 2, 6 and 12 years, respectively. Below ground biomass was highly co-related with microbial biomass and plant available nutrients. N-mineralization, plant available nutrients and the clay content were positively correlated with age of revegetation (P < 0.01). From the numerical modelling it was analyzed that revegetation increased the dump slope stability with a factor of safety of 1.7 and 2.1 after 6 and 12 years of plantation on dump slope, respectively, while it was 1.2 before revegetation. Thus, long term revegetation was found to have direct impact on dump stability and indirect impact on soil fertility status in mine spoil, where plant biomass and microbial biomass provide major contributions in ecological redevelopment of the mine spoil.


Assuntos
Minas de Carvão , Microbiologia do Solo , Solo/química , Biomassa , Índia , Modelos Teóricos , Desenvolvimento Vegetal , Raízes de Plantas , Eliminação de Resíduos , Clima Tropical
10.
Environ Monit Assess ; 146(1-3): 325-37, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18080779

RESUMO

The objective of the present study was to evince the long-term changes after natural revegetation and experimental revegetation of the coal mine spoils with respect to total plant biomass, available plant nutrients, nitrogen transformation and microbial biomass N (MBN) in dry tropical environment of India. Total plant biomass (above- and below-ground), plant available nitrogen, soil nitrogen mineralization and microbial biomass N (MBN) were studied for 2 years in 5 and 10 years old naturally vegetated and revegetated coal mine spoils, and dry tropical forest ecosystem of India. In forest ecosystem, the above ground biomass values ranged from 3,520 to 3,630 kg ha(-1) and belowground from 6,280 to 6,560 kg ha(-1). Plant available nitrogen ranged from 16.76 to 23.21 microg g(-1), net N-mineralization from 9.8 to 48.53 microg g(-1) month(-1) and MBN from 26.4 to 80.02 microg g(-1). In naturally revegetated mine spoil, the above ground biomass values ranged from 1,036 to 1,380 kg ha(-1) and belowground from 2,538 to 3,380 kg ha(-1). Plant available nitrogen ranged from 7.33-17.14 microg g(-1), net N-mineralization from 3.1 to 12.46 microg g(-1) month(-1) and MBN from 14.2 to 35.44 microg g(-1). In revegetated mine spoil, the above ground biomass values ranged from 1,224 to 1,678 kg ha(-1) and belowground from 2,870 to 4,130 kg ha(-1). Plant available nitrogen ranged from 9.4 to 18.83 microg g(-1), net N-mineralization from 4.2 to 16.2 microg g(-1) month(-1) and MBN from 21.6 to 42.6 microg g(-1). The mean plant biomass values in 5 and 10 years mine spoils was lower compared to forest ecosystem by 2.5 and 2 times, respectively. N-mineralization value in 5 year mine spoil was 3.5 times lower and in 10 years mine spoil 2 times lower compared to forest ecosystem. The MBN value was about 2 times lower in both 5 and 10 year mine spoils compared to native forest. MBN was positively related to the re-vegetation age of the mine spoil.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental , Mineração , Árvores , Clima Tropical , Índia
11.
Environ Monit Assess ; 125(1-3): 165-73, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17058012

RESUMO

A study was performed selecting one protected forest and an adjacent degraded forest ecosystem to quantify the impact of forest degradation on soil inorganic nitrogen, fine root production, nitrification, N-mineralization and microbial biomass N. There were marked seasonal variations of all the parameters in the upper 0-10 and lower 10-20 cm depths. The seasonal trend of net nitrification and net N-mineralization was reverse of that for inorganic nitrogen and microbial biomass N. Net nitrification, net N-mineralization and fine root biomass values were highest in both forests during rainy season. On contrary, inorganic nitrogen and microbial biomass N were highest during summer season.There was a marked impact of forest degradation on inorganic nitrogen, fine root production nitrification, N-mineralization and microbial biomass observed. Soil properties also varied with soil depth. Fine root biomass, nitrification, N-mineralization and microbial biomass N decreased significantly in higher soil depth. Degradation causes decline in mean seasonal fine root biomass in upper layer and in lower depth by 37% and 27%, respectively. The mean seasonal net nitrification and N-mineralization in upper depth decreased by 42% and 37%, respectively and in lower depth by 42.21% and 39% respectively. Similarly microbial biomass N also decreased by 31.16% in upper layer 33.19% in lower layer.


Assuntos
Ecossistema , Nitrogênio/metabolismo , Árvores , Amônia/análise , Amônia/metabolismo , Biomassa , Índia , Nitratos/análise , Nitratos/metabolismo , Nitrogênio/análise , Estações do Ano , Solo/análise , Microbiologia do Solo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...