Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(25): 6151-6166, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38845485

RESUMO

This study investigates the nanoscale self-assembly from mixtures of two symmetrical poly(ethylene oxide)-poly(propylene oxide)-pol(ethylene oxide) (PEO-PPO-PEO) block copolymers (BCPs) with different lengths of PEO blocks and similar PPO blocks. The blended BCPs (commercially known as Pluronic F88 and L81, with 80 and 10% PEO, respectively) exhibited rich phase behavior in an aqueous solution. The relative viscosity (ηrel) indicated significant variations in the flow behavior, ranging from fluidic to viscous, thereby suggesting a possible micellar growth or morphological transition. The tensiometric experiments provided insight into the intermolecular hydrophobic interactions at the liquid-air interface favoring the surface activity of mixed-system micellization. Dynamic light scattering (DLS) and small-angle neutron scattering (SANS) revealed the varied structural morphologies of these core-shell mixed micelles and polymersomes formed under different conditions. At a concentration of ≤5% w/v, Pluronic F88 exists as molecularly dissolved unimers or Gaussian chains. However, the addition of the very hydrophobic Pluronic L81, even at a much lower (<0.2%) concentration, induced micellization and promoted micellar growth/transition. These results were further substantiated through molecular dynamics (MD) simulations, employing a readily transferable coarse-grained (CG) molecular model grounded in the MARTINI force field with density and solvent-accessible surface area (SASA) profiles. These findings proved that F88 underwent micellar growth/transition in the presence of L81. Furthermore, the potential use of these Pluronic mixed micelles as nanocarriers for the anticancer drug quercetin (QCT) was explored. The spectral analysis provided insight into the enhanced solubility of QCT through the assessment of the standard free energy of solubilization (ΔG°), drug-loading efficiency (DL%), encapsulation efficiency (EE%), and partition coefficient (P). A detailed optimization of the drug release kinetics was presented by employing various kinetic models. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay, a frequently used technique for assessing cytotoxicity in anticancer research, was used to gauge the effectiveness of these QCT-loaded mixed nanoaggregates.


Assuntos
Micelas , Poloxâmero , Polietilenoglicóis , Poloxâmero/química , Polietilenoglicóis/química , Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Humanos , Propilenoglicóis/química , Viscosidade , Simulação de Dinâmica Molecular
2.
Soft Matter ; 19(37): 7227-7244, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37724390

RESUMO

The nanoscale self-assembly behavior in ethylene oxide (EO) and propylene oxide (PO)-based block copolymers (BCPs) commercially available as Pluronics®: L44 (PEO10-PPO23-PEO10) and F77 (PEO53-PPO34-PEO53) is put forth in aqueous solution and in the presence of sodium salts NaCl and Na2SO4. The moderate hydrophilicity of L44 is attributed to its low molecular weight PPO segment, while the high percentage of PEO content in F77 contributes to its extreme hydrophilicity. The impact of sodium salts (NaCl and Na2SO4) on the self-assembly is investigated to understand their influence and role in micellization, by employing various physicochemical techniques such as phase behavior conduct, calorimetry, tensiometry, scattering, and spectral analysis. The results indicate that at a low temperature range of 20-30 °C, Pluronics® solutions with a concentration of 10% w/v remain molecularly dissolved as individual units called unimers (Gaussian chain), which have a hydrodynamic size (Dh) of approximately 4-6 nm. Additionally, loose clusters of a few hundred nanometers in size are also observed. Though, at higher concentrations of BCPs and in the presence of salt or elevated temperatures, the examined micellar structures exhibit a higher degree of organization i.e., spherical or ellipsoidal in terms of size and shape. Also, the solubilization enhancement of a hydrophobic dye called orange OT within the examined micellar system is also undertaken using a spectral approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...