Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1405090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863756

RESUMO

Rice false smut, which is caused by the soil-borne fungal pathogen Ustilaginoidea virens (U. virens), is one of the most threatening diseases in most of the rice-growing countries including India that causes 0.5-75% yield loss, low seed germination, and a reduction in seed quality. The assessment of yield loss helps to understand the relevance of disease severity and facilitates the implementation of appropriate management strategies. This study aimed to mitigate biotic stress in rice by employing a rhizobacterial-based bioformulation, which possesses diverse capabilities as both a plant growth promoter and a biocontrol agent against U. virens. Rhizobacteria were isolated from the soil of the rice rhizospheres from the healthy plant of the false smut affected zone. Furthermore, they were identified as Bacillus strains: B. subtilis (BR_4), B. licheniformis (BU_7), B. licheniformis (BU_8), and B. vallismortis (KU_7) via sequencing. Isolates were screened for their biocontrol potential against U. virens under in vitro conditions. The antagonistic study revealed that B. vallismortis (KU_7) inhibited U. virens the most (44.6%), followed by B. subtilis BR_4 (41.4%), B. licheniformis BU_7 (39.8%), and B. licheniformis BU_8 (43.5%). Various biochemical and plant growth promoting attributes, such as phosphate and Zn solubilization, IAA, ammonium, siderophore, and chitinase production, were also investigated for all the selected isolates. Furthermore, the potential of the isolates was tested in both in vitro and field conditions by employing talc-based bioformulation through bio-priming and root treatment. The application of bioformulation revealed a 20% decrease in disease incidence in plants treated with B. vallismortis (KU_7), a 60.5% increase in the biological yield, and a 45% increase in the grain yield. This eco-friendly approach not only controlled the disease but also improved the grain quality and reduced the chaffiness.

2.
Int J Biol Macromol ; 256(Pt 1): 128272, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000568

RESUMO

Nanozymes, a new class of nanomaterials-based artificial enzymes, have gained huge attraction due to their high operational stability, working efficiency in extreme conditions, and resistance towards protease digestion. Nowadays, they are effectively substituted for natural enzymes for catalysis by closely resembling the active sites found in natural enzymes. Nanozymes can compensate for natural enzymes' drawbacks, such as high cost, poor stability, low yield, and storage challenges. Due to their transforming nature, nanozymes are of utmost importance in the detection and treatment of cancer. They enable precise cancer detection, tailored drug delivery, and catalytic therapy. Through enhanced diagnosis, personalized therapies, and reduced side effects, their adaptability and biocompatibility can transform the management of cancer. The review focuses on metal and metal oxide-based nanozymes, highlighting their catalytic processes, and their applications in the prevention and treatment of cancer. It emphasizes their potential to alter diagnosis and therapy, particularly when it comes to controlling reactive oxygen species (ROS). The article reveals the game-changing importance of nanozymes in the future of cancer care and describes future research objectives, making it a useful resource for researchers, and scientists. Lastly, outlooks for future perspective areas in this rapidly emerging field have been provided in detail.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Endopeptidases , Peptídeo Hidrolases , Catálise
3.
Plant Sci ; 340: 111964, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159611

RESUMO

Nanotechnology offers the potential to provide innovative solutions for sustainable crop production as plants are exposed to a combination of climate change factors (CO2, temperature, UV radiation, ozone), abiotic (heavy metals, salinity, drought), and biotic (virus, bacteria, fungi, nematode, and insects) stresses. The application of particular sizes, shapes, and concentration of nanomaterials (NMs) potentially mitigate the negative impacts in plants by modulation of photosynthetic rate, redox homeostasis, hormonal balance, and nutrient assimilation through upregulation of anti-stress metabolites, antioxidant defense pathways, and genes and genes network. The present review inculcates recent advances in uptake, translocation, and accumulation mechanisms of NMs in plants. The critical theme of this review provides detailed insights into different physiological, biochemical, molecular, and stress tolerance mechanism(s) of NMs action and their cross-talk with different phytohormones. The role of NMs as a double-edged sword for climate change factors, abiotic, and biotic stresses for nutrients uptake, hormones synthesis, cytotoxic, and genotoxic effects including chromosomal aberration, and micronuclei synthesis have been extensively studied. Importantly, this review aims to provide an in-depth understanding of the hormesis effect at low and toxicity at higher doses of NMs under different stressors to develop innovative approaches and design smart NMs for sustainable crop production.


Assuntos
Nanoestruturas , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Temperatura
4.
Biomark Med ; 17(16): 679-691, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37934044

RESUMO

The progression of any disease and its outcomes depend on the complicated interaction between pathogens, host and environmental factors. Thus, complete knowledge of bacterial toxins involved in pathogenesis is necessary to develop diagnostic methods and alternative therapies, including vaccines. This review summarizes recently employed biomarkers to diagnose the presence of Helicobacter pylori bacteria. The authors review distinct types of disease-associated biomarkers such as urease, DNA, miRNA, aptamers and bacteriophages that can be utilized as targets to detect Helicobacter pylori and, moreover, gastric cancer in its early stage. A detailed explanation is also given in the context of the recent utilization of these biomarkers in the development of a highly specific and sensitive biosensing platform.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Helicobacter pylori/genética , Neoplasias Gástricas/diagnóstico , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/complicações , Biomarcadores
5.
Microbiol Res ; 270: 127317, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36805163

RESUMO

Albugo candida, the causal organism of white rust, is an oomycete obligate pathogen infecting crops of Brassicaceae family occurred on aerial part, including vegetable and oilseed crops at all growth stages. The disease expression is characterized by local infection appearing on the abaxial region developing white or creamy yellow blister (sori) on leaves and systemic infections cause hypertrophy and hyperplasia leading to stag-head of reproductive organ. To overcome this problem, several disease management strategies like fungicide treatments were used in the field and disease-resistant varieties have also been developed using conventional and molecular breeding. Due to high variability among A. candida isolates, there is no single approach available to understand the diverse spectrum of disease symptoms. In absence of resistance sources against pathogen, repetitive cultivation of genetically-similar varieties locally tends to attract oomycete pathogen causing heavy yield losses. In the present review, a deep insight into the underlying role of the non-host resistance (NHR) defence mechanism available in plants, and the strategies to exploit available gene pools from plant species that are non-host to A. candida could serve as novel sources of resistance. This work summaries the current knowledge pertaining to the resistance sources available in non-host germ plasm, the understanding of defence mechanisms and the advance strategies covers molecular, biochemical and nature-based solutions in protecting Brassica crops from white rust disease.


Assuntos
Brassica , Oomicetos , Brassica/genética , Folhas de Planta , Oomicetos/genética , Doenças das Plantas/genética , Resistência à Doença
6.
Drug Deliv Transl Res ; 13(1): 135-163, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35727533

RESUMO

Since the beginning of pharmaceutical research, drug delivery methods have been an integral part of it. Polymeric micelles (PMs) have emerged as multifunctional nanoparticles in the current technological era of nanocarriers, and they have shown promise in a range of scientific fields. They can alter the release profile of integrated pharmacological substances and concentrate them in the target zone due to their improved permeability and retention, making them more suitable for poorly soluble medicines. With their ability to deliver poorly soluble chemotherapeutic drugs, PMs have garnered considerable interest in cancer. As a result of their remarkable biocompatibility, improved permeability, and minimal toxicity to healthy cells, while also their capacity to solubilize a wide range of drugs in their micellar core, PMs are expected to be a successful treatment option for cancer therapy in the future. Their nano-size enables them to accumulate in the tumor microenvironment (TME) via the enhanced permeability and retention (EPR) effect. In this review, our major aim is to focus primarily on the stellar applications of PMs in the field of cancer therapeutics along with its mechanism of action and its latest advancements in drug and gene delivery (DNA/siRNA) for cancer, using various therapeutic strategies such as crossing blood-brain barrier, gene therapy, photothermal therapy (PTT), and immunotherapy. Furthermore, PMs can be employed as "smart drug carriers," allowing them to target specific cancer sites using a variety of stimuli (endogenous and exogenous), which improve the specificity and efficacy of micelle-based targeted drug delivery. All the many types of stimulants, as well as how the complex of PM and various anticancer drugs react to it, and their pharmacodynamics are also reviewed here. In conclusion, commercializing engineered micelle nanoparticles (MNPs) for application in therapy and imaging can be considered as a potential approach to improve the therapeutic index of anticancer drugs. Furthermore, PM has stimulated intense interest in research and clinical practice, and in light of this, we have also highlighted a few PMs that have previously been approved for therapeutic use, while the majority are still being studied in clinical trials for various cancer therapies.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Micelas , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Microambiente Tumoral
7.
Luminescence ; 38(7): 1330-1338, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36519806

RESUMO

Uric acid (2,6,8-trihydroxypurine) is a metabolic product of purine, which is one of the important markers of human health. The development of a rapid, facile, highly sensitive, and selective method for uric acid detection is critical for the diagnosis of related diseases and is still a strategic challenge. In this study, we developed a highly sensitive and selective colorimetric assay for the detection of uric acid using biogenic palladium nanoparticles (Pd NPs). The synthesized nanoparticles were shown to acquire peroxidase mimetic activity that oxidized 3,3',5,5'-tetramethylbenzidine and produced a blue colour in an assay. The developed colorimetric assay is instrument-free detection of uric acid with a limit of detection of 0.05 µM and a 1.11 µM limit of quantification (LOQ). This is the first report determining the LOQ for a colorimetric assay that gives the lowest quantity of analyte that can be evaluated with more precision under the specified conditions of the analysis. The developed assay had a linear response at low uric acid concentrations of 0.05 to 1 µM and a 0.99841 linear regression correlation coefficient. This colorimetric detection provides a rapid, cost-effective, and easy-to-use platform for the clinical diagnosis of uric acid biomarkers.


Assuntos
Nanopartículas Metálicas , Ácido Úrico , Humanos , Peroxidase/metabolismo , Colorimetria/métodos , Paládio , Peróxido de Hidrogênio/análise
8.
Nanomaterials (Basel) ; 11(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34361185

RESUMO

The enzyme mimetic activity of nanomaterials has been applied in colorimetric assays and point-of-care diagnostics. Several nanomaterials have been exploited for their peroxidase mimetic activity toward 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. However, an efficient nanomaterial for the rapid and strong oxidation of TMB remains a strategic challenge. Therefore, in this study, we developed copper-loaded tin oxide (SnO2-Cu) nanocomposites that rapidly oxidize TMB. These nanocomposites have strong absorption at 650 nm and can be used for highly sensitive colorimetric detection. An environmentally friendly (green), rapid, easy, and cost-effective method was developed for the synthesis of these nanocomposites, which were characterized using ultraviolet-visible, energy-dispersive X-ray, and Fourier-transform infrared spectroscopy, as well as scanning electron microscopy. This is the first green synthesis of SnO2-Cu nanocomposites. Their enzyme mimetic activity, which was first studied here, was found to be strongly dependent on the temperature and pH value of the solution. The synthesized nanocomposites have the advantages of low cost, high stability, and ease of preparation for enzyme mimetic applications. Hence, SnO2-Cu nanocomposites are a promising alternative to peroxidase enzymes in colorimetric point-of-care diagnostics.

9.
Molecules ; 25(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717976

RESUMO

Hydrogen peroxide is a low-reactivity reactive oxygen species (ROS); however, it can easily penetrate cell membranes and produce highly reactive hydroxyl radical species through Fenton's reaction. Its presence in abnormal amounts can lead to serious diseases in humans. Although the development of a simple, ultrasensitive, and selective method for H2O2 detection is crucial, this remains a strategic challenge. The peroxidase mimetic activity of palladium nanoclusters (PdNCs) has not previously been evaluated. In this study, we developed an ultrasensitive and selective colorimetric detection method for H2O2 using PdNCs. An unprecedented eco-friendly, cost-effective, and facile biological method was developed for the synthesis of PdNCs. This is the first report of the biosynthesis of PdNCs. The synthesized nanoclusters had a significantly narrow size distribution profile and high stability. The nanoclusters were demonstrated to possess a peroxidase mimetic activity that could oxidize peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB). Various interfering substances in serum (100 µM phenylalanine, cysteine, tryptophan, arginine, glucose, urea, Na+, Fe2+, PO43-, Mn+2, Ca2+, Mg2+, Zn2+, NH4+, and K+) were included to evaluate the selectivity of the assay, and oxidation of TMB occurred only in the presence of H2O2. Therefore, PdNCs show an efficient nanozyme for the peroxidase mimetic activity. The assay produced a sufficient signal at the ultralow concentration of 0.0625 µM H2O2. This colorimetric assay provides a real-time, rapid, and easy-to-use platform for the detection of H2O2 for clinical purposes.


Assuntos
Erigeron/crescimento & desenvolvimento , Paládio/farmacologia , Espécies Reativas de Oxigênio/análise , Benzidinas/química , Calorimetria , Erigeron/metabolismo , Peróxido de Hidrogênio/análise , Mimetismo Molecular , Nanocompostos , Paládio/química , Fotossíntese
10.
Molecules ; 25(11)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498444

RESUMO

Recent developments in the area of nanotechnology have focused on the development of nanomaterials with catalytic activities. The enzyme mimics, nanozymes, work efficiently in extreme pH and temperature conditions, and exhibit resistance to protease digestion, in contrast to enzymes. We developed an environment-friendly, cost-effective, and facile biological method for the synthesis of ZnO-Pd nanosheets. This is the first biosynthesis of ZnO-Pd nanosheets. The synthesized nanosheets were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray. The d-spacing (inter-atomic spacing) of the palladium nanoparticles in the ZnO sheets was found to be 0.22 nm, which corresponds to the (111) plane. The XRD pattern revealed that the 2θ values of 21.8°, 33.3°, 47.7°, and 56.2° corresponded with the crystal planes of (100), (002), (112), and (201), respectively. The nanosheets were validated to possess peroxidase mimetic activity, which oxidized the 3,3',5,5'-tetramethylbenzidine (TMB) substrate in the presence of H2O2. After 20 min of incubation time, the colorless TMB substrate oxidized into a dark-blue-colored one and a strong peak was observed at 650 nm. The initial velocities of Pd-ZnO-catalyzed TMB oxidation by H2O2 were analyzed by Michaelis-Menten and Lineweaver-Burk plots, resulting in 64 × 10-6 M, 8.72 × 10-9 Msec-1, and 8.72 × 10-4 sec-1 of KM, Vmax, and kcat, respectively.


Assuntos
Materiais Biomiméticos/síntese química , Paládio/química , Óxido de Zinco/química , Materiais Biomiméticos/química , Química Verde , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Peroxidase/metabolismo , Difração de Raios X
11.
IET Nanobiotechnol ; 12(4): 509-513, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29768239

RESUMO

This study reveals the antibacterial and catalytic activity of biogenic gold nanoparicles (AuNPs) synthesised by biomass of Trichoderma harzianum. The antibacterial activity of AuNPs was analysed by the means of growth curve, well diffusion and colony forming unit (CFU) count methods. The minimum inhibitory concentration of AuNPs was 20 µg/ml. AuNPs at 60 µg/ml show effective antibacterial activity as optical absorption was insignificant. The well diffusion and CFU methods were also applied to analyse the effect of various concentration of AuNPs. Further, the catalytic activity of AuNPs was analysed against methylene blue (MB) as a model pollutant in water. MB was degraded 39% in 30 min in the presence of AuNPs and sodium borohydrate and the rate constant (k) was found to be 0.2 × 10-3 s-1. This shows that the biogenic AuNP is an effective candidate for antibacterial and catalytic degradation of toxic pollutants.


Assuntos
Antibacterianos/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas/química , Trichoderma/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Ouro/química , Química Verde , Testes de Sensibilidade Microbiana , Tamanho da Partícula
12.
IEEE Trans Nanobioscience ; 16(4): 280-286, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28475065

RESUMO

The removal of dichlorvos contamination from water is a challenging task because of the presence of direct carbon to phosphorous covalent bond, which makes them resistant to chemical and thermal degradation. Although there have been reports in the literature for degradation of dichlorvos using nanomaterials, those are based on photocatalysis. In this paper, we report a simple and rapid method for catalytic degradation of dichlorvos using protein-capped zero valent iron nanoparticles (FeNPs). We have developed an unprecedented reliable, clean, nontoxic, eco-friendly, and cost-effective biological method for the synthesis of uniformly distributed FeNPs. Yeast extract was used as reducing and capping agent in the synthesis of FeNPs, and synthesized particles were characterized by the UV-visible spectroscopy, X -ray diffraction, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). TEM micrographs reveal that the nanoparticles size is distributed in the range of 2-10 nm. Selected area electron diffraction pattern shows the polycrystalline rings of FeNPs. The mean size was found to be 5.006 nm from ImageJ. FTIR spectra depicted the presence of biomolecules, which participated in the synthesis and stabilization of nanoparticles. As synthesized, FeNPs were used for the catalytic degradation of dichlorvos in aqueous medium. The degradation activity of the FeNPs has been investigated by the means of incubation time effect, oxidant effect, and nanoparticle concentration effect. The ammonium molybdate test was used to confirm the release of phosphate ions during the interaction of dichlorvos with FeNPs.


Assuntos
Diclorvós/química , Ferro/química , Nanopartículas Metálicas/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Diclorvós/análise , Diclorvós/isolamento & purificação , Ferro/metabolismo , Oxirredução , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Leveduras/metabolismo
13.
IET Nanobiotechnol ; 11(4): 360-364, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28530182

RESUMO

The present study reports a novel, facile, biosynthesis route for the synthesis of carbon nanodots (CDs) with an approximate quantum yield of 38.5%, using Musk melon extract as a naturally derived-precursor material. The synthesis of CDs was established by using ultraviolet-visible (UV-vis) spectroscopy, Dynamic light scattering, photoluminescence spectroscopy, X-ray diffraction, transmission electron microscopy and Fourier transform infrared (FTIR) spectroscopy. The as-prepared CDs possess an eminent fluorescence under UV-light (λex = 365 nm). The size range of CDs was found to be in the range of 5-10 nm. The authors further explored the use of such biosynthesised CDs as a photocatalyst material for removal of industrial dye. Degradation of methylene blue dye was performed in a photocatalytic reactor and monitored using UV-vis spectroscopy. The CDs show excellent dye degradation capability of 37.08% in 60 min and reaction rate of 0.0032 min-1. This study shows that synthesised CDs are highly stable in nature, and possess potential application in wastewater treatment.


Assuntos
Carbono/química , Corantes/química , Química Verde/métodos , Nanopartículas/química , Fotoquímica/métodos , Poluentes Químicos da Água/isolamento & purificação , Carbono/efeitos da radiação , Catálise , Corantes/isolamento & purificação , Corantes/efeitos da radiação , Estabilidade de Medicamentos , Luz , Teste de Materiais , Nanopartículas/efeitos da radiação , Tamanho da Partícula , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Purificação da Água/métodos
14.
IET Nanobiotechnol ; 9(6): 386-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26647816

RESUMO

Since the first experiment depicting gene inhibition using RNA interference mechanism, extensive research has been carried out to design targeted delivery systems that use short interfering RNAs (siRNAs) for gene expression regulation. Although several siRNAs loaded nanoparticle systems have reached clinical trial stage, cellular uptake, reticuloendothelial entrapment and endosomal escape still limit the efficacy of these drugs considerably. This review discusses about the RNA interference mechanism, nanostructures being used as non-viral vectors for targeted delivery, limitations of the common delivery systems and the current siRNA-loaded nanoparticle formulations undergoing clinical testing.


Assuntos
Inativação Gênica , Terapia Genética/métodos , Terapia Genética/tendências , Nanocápsulas/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Animais , Medicina Baseada em Evidências , Humanos , Nanocápsulas/ultraestrutura , Transfecção/métodos
15.
IET Nanobiotechnol ; 9(4): 178-83, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26224346

RESUMO

The catalytic reduction of methylene blue was studied using biosynthesised gold-silver (Au-Ag) alloy nanoparticles (NPs). The fungal biomass of Trichoderma harzianum was used as a reducing and stabilising agent in the synthesis of Au-Ag alloy NPs. The synthesised NPs were well characterised by UV-vis spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The plausible synthesis mechanism involved in the formation of Au-Ag alloy NPs was also discussed with diagrammatic representation. A series of experiments was performed to investigate the catalytic activity of the as-prepared Au-Ag alloy NPs and found that the alloy NPs show excellent catalytic activity.


Assuntos
Biotecnologia/métodos , Ligas de Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Prata/química , Trichoderma/metabolismo , Ligas de Ouro/metabolismo , Prata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...