Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Omega ; 8(7): 7070-7084, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844552

RESUMO

This study examines the influence of subcritical pressure and the physical nature (intact and powder) of coal samples on CO2 adsorption capacity and kinetics in the context of CO2 sequestration in shallow level coal seams. Manometric adsorption experiments were carried out on two anthracite and one bituminous coal samples. Isothermal adsorption experiments were carried out at 298.15 K in two pressure ranges: less than 6.1 MPa and up to 6.4 MPa relevant to gas/liquid adsorption. The adsorption isotherms of intact anthracite and bituminous samples were compared to that of the powdered samples. The powdered samples of the anthracitic samples had a higher adsorption than that of intact samples due to the exposed adsorption sites. The intact and powdered samples of bituminous coal, on the other hand, exhibited comparable adsorption capacities. The comparable adsorption capacity is attributed to the intact samples' channel-like pores and microfractures, where high density CO2 adsorption occurs. The adsorption-desorption hysteresis patterns and the residual amount of CO2 trapped in the pores reinforce the influence of the physical nature of the sample and pressure range on the CO2 adsorption-desorption behavior. The intact 18 ft AB samples showed significantly different adsorption isotherm pattern to that of powdered samples for experiments conducted up to 6.4 MPa equilibrium pressure due to the high-density CO2 adsorbed phase in the intact samples. The adsorption experimental data fit into the theoretical models showed that the BET model fit better than the Langmuir model. The experimental data fit into the pseudo first order, second order, and Bangham pore diffusion kinetic models showed that the rate-determining steps are bulk pore diffusion and surface interaction. Generally, the results obtained from the study demonstrated the significance of conducting experiments with large, intact core samples pertinent to CO2 sequestration in shallow coal seams.

2.
J Environ Manage ; 249: 109378, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31445373

RESUMO

The success of phytoremediation is dependent on the exposure of plants to contaminants, which is controlled by root distribution, physicochemical characteristics, and contaminant behavior in the soil environment. Whilst phytoremediation has been successful in remediating hydrocarbons and other organic contaminants, there is little understanding of the impact of non-aqueous phase liquids (NAPLs) on plant behavior, root architecture and the resulting impact of this on phytoremediation. Light NAPLs (LNAPLs) may be present in pore spaces in the capillary zone as a continuous or semi-continuous phase, or as unconnected ganglia which act as individual contaminant sources. Experimental work with ryegrass (Lolium perenne) grown under hydroponic conditions in idealised pore scale models is presented, exploring how plant growth, root distribution and development, and oil removal are affected through direct physical contact with a model LNAPL (mineral oil). In the presence of low levels of LNAPL, a significant decrease in root length was observed, whilst at higher LNAPL levels root lengths increased due to root diversion and spreading, with evidence of root redistribution in the case of LNAPL contamination across multiple adjacent pores. Changes to root morphology were also observed in the presence of LNAPL with plant roots coarse and crooked compared to long, fine and smooth roots in uncontaminated columns. Root and shoot biomass also appear to be impacted by the LNAPL although the effects are complex, affected by both root diversion and thickening. Substantial levels of LNAPL removal were observed, with roots close to LNAPL sources able to remove dissolved-phase contamination, and root growth through LNAPL sources suggest that direct uptake/degradation is possible.


Assuntos
Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Desenvolvimento Vegetal , Raízes de Plantas , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...