Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 15(1): 51-64, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27392225

RESUMO

The chromium isotope system (53 Cr/52 Cr expressed as δ53 Cr relative to NIST SRM 979) is potentially a powerful proxy for the redox state of the ocean-atmosphere system, but a lack of temporally continuous, well-calibrated archives has limited its application to date. Marine carbonates could potentially serve as a common and continuous Cr isotope archive. Here, we present the first evaluation of planktonic foraminiferal calcite as an archive of seawater δ53 Cr. We show that single foraminiferal species from globally distributed core tops yielded variable δ53 Cr, ranging from 0.1‰ to 2.5‰. These values do not match with the existing measurements of seawater δ53 Cr. Further, within a single core-top, species with similar water column distributions (i.e., depth habitats) yielded variable δ53 Cr values. In addition, mixed layer and thermocline species do not consistently exhibit decreasing trends in δ53 Cr as expected based on current understanding of Cr cycling in the ocean. These observations suggest that either seawater δ53 Cr is more heterogeneous than previously thought or that there is significant and species-dependent Cr isotope fractionation during foraminiferal calcification. Given that the δ53 Cr variability is comparable to that observed in geological samples throughout Earth's history, interpreting planktonic foraminiferal δ53 Cr without calibrating modern foraminifera further, and without additional seawater measurements, would lead to erroneous conclusions. Our core-top survey clearly indicates that planktonic foraminifera are not a straightforward δ53 Cr archive and should not be used to study marine redox evolution without additional study. It likewise cautions against the use of δ53 Cr in bulk carbonate or other biogenic archives pending further work on vital effects and the geographic heterogeneity of the Cr isotope composition of seawater.


Assuntos
Organismos Aquáticos/química , Isótopos do Cromo/análise , Foraminíferos/química , Plâncton/parasitologia , Água do Mar/parasitologia
2.
Nat Commun ; 7: 12274, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27447820

RESUMO

Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ∼0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...