Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075868

RESUMO

PURPOSE: To develop a framework for simultaneous three-dimensional (3D) mapping of T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and fat signal fraction in the liver at 0.55 T. METHODS: The proposed sequence acquires four interleaved 3D volumes with a two-echo Dixon readout. T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ are encoded into each volume via preparation modules, and dictionary matching allows simultaneous estimation of T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and M 0 $$ {M}_0 $$ for water and fat separately. 2D image navigators permit respiratory binning, and motion fields from nonrigid registration between bins are used in a nonrigid respiratory-motion-corrected reconstruction, enabling 100% scan efficiency from a free-breathing acquisition. The integrated nature of the framework ensures the resulting maps are always co-registered. RESULTS: T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and fat-signal-fraction measurements in phantoms correlated strongly (adjusted r 2 > 0 . 98 $$ {r}^2>0.98 $$ ) with reference measurements. Mean liver tissue parameter values in 10 healthy volunteers were 427 ± 22 $$ 427\pm 22 $$ , 47 . 7 ± 3 . 3 ms $$ 47.7\pm 3.3\;\mathrm{ms} $$ , and 7 ± 2 % $$ 7\pm 2\% $$ for T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and fat signal fraction, giving biases of 71 $$ 71 $$ , - 30 . 0 ms $$ -30.0\;\mathrm{ms} $$ , and - 5 $$ -5 $$ percentage points, respectively, when compared to conventional methods. CONCLUSION: A novel sequence for comprehensive characterization of liver tissue at 0.55 T was developed. The sequence provides co-registered 3D T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and fat-signal-fraction maps with full coverage of the liver, from a single nine-and-a-half-minute free-breathing scan. Further development is needed to achieve accurate proton-density fat fraction (PDFF) estimation in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA