Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 20(1): 20230484, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38195056

RESUMO

Vocal display behaviours are common throughout the animal kingdom, play important roles in both courtship and aggression, and are frequent subjects of behavioural research. Although females of many species vocalize, an overwhelming fraction of behavioural research has focused on male display. We investigated vocal display behaviours in female singing mice (Scotinomys teguina), small muroid rodents in which both sexes produce songs consisting of trills of rapid, downward frequency sweeps. Previous research established that male singing mice increase song production and engage in precisely timed counter-singing behaviour in response to playback of conspecific male song. We tested whether female singing mice also increased their rate of singing in response to playback of male song, whether they counter-sing, and whether there are sexual dimorphisms in song effort. Our results demonstrate that much like males, female singing mice increase their song effort and counter-sing in response to playback of male song; however, females sing fewer and shorter songs compared to males. This study further informs the understanding of female vocal behaviour and establishes the singing mouse as a valuable model for investigating female vocal display.


Assuntos
Caracteres Sexuais , Comportamento Sexual , Humanos , Feminino , Masculino , Animais , Camundongos , Agressão , Sigmodontinae
2.
BMC Genomics ; 22(1): 399, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34058981

RESUMO

BACKGROUND: Pair bonding with a reproductive partner is rare among mammals but is an important feature of human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the neural and molecular mechanisms necessary for pair-bond formation in that species. However, these studies have largely focused on just a few neuromodulatory systems. To test the hypothesis that neural gene expression differences underlie differential capacities to bond, we performed RNA-sequencing on tissue from three brain regions important for bonding and other social behaviors across bond-forming prairie voles and non-bonding meadow voles. We examined gene expression in the amygdala, hypothalamus, and combined ventral pallidum/nucleus accumbens in virgins and at three time points after mating to understand species differences in gene expression at baseline, in response to mating, and during bond formation. RESULTS: We first identified species and brain region as the factors most strongly associated with gene expression in our samples. Next, we found gene categories related to cell structure, translation, and metabolism that differed in expression across species in virgins, as well as categories associated with cell structure, synaptic and neuroendocrine signaling, and transcription and translation that varied among the focal regions in our study. Additionally, we identified genes that were differentially expressed across species after mating in each of our regions of interest. These include genes involved in regulating transcription, neuron structure, and synaptic plasticity. Finally, we identified modules of co-regulated genes that were strongly correlated with brain region in both species, and modules that were correlated with post-mating time points in prairie voles but not meadow voles. CONCLUSIONS: These results reinforce the importance of pre-mating differences that confer the ability to form pair bonds in prairie voles but not promiscuous species such as meadow voles. Gene ontology analysis supports the hypothesis that pair-bond formation involves transcriptional regulation, and changes in neuronal structure. Together, our results expand knowledge of the genes involved in the pair bonding process and open new avenues of research in the molecular mechanisms of bond formation.


Assuntos
Arvicolinae , Ligação do Par , Animais , Arvicolinae/genética , Encéfalo , Humanos , Comportamento Social , Especificidade da Espécie
3.
Genes Brain Behav ; : e12740, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33960645

RESUMO

For many animal species, vocal communication is a critical social behavior and often a necessary component of reproductive success. Additionally, vocalizations are often demanding motor acts. Wanting to know whether a specific molecular toolkit might be required for vocalization, we used RNA-sequencing to investigate neural gene expression underlying the performance of an extreme vocal behavior, the courtship hum of the plainfin midshipman fish (Porichthys notatus). Single hums can last up to 2 h and may be repeated throughout an evening of courtship activity. We asked whether vocal behavioral states are associated with specific gene expression signatures in key brain regions that regulate vocalization by comparing transcript expression levels in humming versus non-humming males. We find that the circadian-related genes period3 and Clock are significantly upregulated in the vocal motor nucleus and preoptic area-anterior hypothalamus, respectively, in humming compared with non-humming males, indicating that internal circadian clocks may differ between these divergent behavioral states. In addition, we identify suites of differentially expressed genes related to synaptic transmission, ion channels and transport, neuropeptide and hormone signaling, and metabolism and antioxidant activity that together may support the neural and energetic demands of humming behavior. Comparisons of transcript expression across regions stress regional differences in brain gene expression, while also showing coordinated gene regulation in the vocal motor circuit in preparation for courtship behavior. These results underscore the role of differential gene expression in shifts between behavioral states, in this case neuroendocrine, motor and circadian control of courtship vocalization.

4.
J Neurosci ; 40(7): 1549-1559, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31911461

RESUMO

Understanding the contribution of neuropeptide-containing neurons to variation in social behavior remains critically important. Galanin has gained increased attention because of the demonstration that galanin neurons in the preoptic area (POA) promote mating and parental care in mammals. How widespread these mechanisms are among vertebrates essentially remains unexplored, especially among teleost fishes, which comprise nearly one-half of living vertebrate species. Teleosts with alternative reproductive tactics exhibit stereotyped patterns of social behavior that diverge widely between individuals within a sex. This includes midshipman that have two male morphs. Type I males mate using either acoustic courtship to attract females to enter a nest they guard or cuckoldry during which they steal fertilizations from a nest-holding male using a sneak or satellite spawning tactic, whereas type II males only cuckold. Using the neural activity marker phospho-S6, we show increased galanin neuron activation in courting type I males during mating that is not explained by their courtship vocalizations, parental care of eggs, or nest defense against cuckolders. This increase is not observed during mating in cuckolders of either morph or females (none of which show parental care). Together with their role in mating in male mammals, the results demonstrate an unexpectedly specific and deep-rooted, phylogenetically shared behavioral function for POA galanin neurons. The results also point to galanin-dependent circuitry as a potential substrate for the evolution of divergent phenotypes within one sex and provide new functional insights into how POA populations in teleosts compare to the POA and anterior hypothalamus of tetrapods.SIGNIFICANCE STATEMENT Studies of neuropeptide regulation of vertebrate social behavior have mainly focused on the vasopressin-oxytocin family. Recently, galanin has received attention as a regulator of social behavior largely because of studies demonstrating that galanin neurons in the preoptic area (POA) promote mating and parental care in mammals. Species with alternative reproductive tactics (ARTs) exhibit robust, consistent differences in behavioral phenotypes between individuals within a sex. Taking advantage of this trait, we show POA galanin neurons are specifically active during mating in one of two male reproductive tactics, but not other mating-related behaviors in a fish with ARTs. The results demonstrate a deep, phylogenetically shared role for POA galanin neurons in reproductive-related social behaviors with implications for the evolution of ARTs.


Assuntos
Batracoidiformes/fisiologia , Galanina/fisiologia , Neurônios/fisiologia , Área Pré-Óptica/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Batracoidiformes/anatomia & histologia , Corte , Feminino , Masculino , Mamíferos/fisiologia , Comportamento de Nidação/fisiologia , Fenótipo , Área Pré-Óptica/citologia , Especificidade da Espécie , Territorialidade , Vocalização Animal/fisiologia
5.
J Comp Neurol ; 528(3): 433-452, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31469908

RESUMO

Galanin is a peptide that regulates pituitary hormone release, feeding, and reproductive and parental care behaviors. In teleost fish, increased galanin expression is associated with territorial, reproductively active males. Prior transcriptome studies of the plainfin midshipman (Porichthys notatus), a highly vocal teleost fish with two male morphs that follow alternative reproductive tactics, show that galanin is upregulated in the preoptic area-anterior hypothalamus (POA-AH) of nest-holding, courting type I males during spawning compared to cuckolding type II males. Here, we investigate possible differences in galanin immunoreactivity in the brain of both male morphs and females with a focus on vocal-acoustic and neuroendocrine networks. We find that females differ dramatically from both male morphs in the number of galanin-expressing somata and in the distribution of fibers, especially in brainstem vocal-acoustic nuclei and other sensory integration sites that also differ, though less extensively, between the male morphs. Double labeling shows that primarily separate populations of POA-AH neurons express galanin and the nonapeptides arginine-vasotocin or isotocin, homologues of mammalian arginine vasopressin and oxytocin that are broadly implicated in neural mechanisms of vertebrate social behavior including morph-specific actions on vocal neurophysiology in midshipman. Finally, we report a small population of POA-AH neurons that coexpress galanin and the neurotransmitter γ-aminobutyric acid. Together, the results indicate that galanin neurons in midshipman fish likely modulate brain activity at a broad scale, including targeted effects on vocal motor, sensory and neuroendocrine systems; are unique from nonapeptide-expressing populations; and play a role in male-specific behaviors.


Assuntos
Encéfalo/metabolismo , Galanina/metabolismo , Rede Nervosa/metabolismo , Sistemas Neurossecretores/metabolismo , Caracteres Sexuais , Vocalização Animal/fisiologia , Animais , Química Encefálica/fisiologia , Feminino , Peixes , Galanina/análise , Masculino , Rede Nervosa/química , Sistemas Neurossecretores/química , Som
6.
Proc Biol Sci ; 285(1871)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29343607

RESUMO

Reproductive success relies on the coordination of social behaviours, such as territory defence, courtship and mating. Species with extreme variation in reproductive tactics are useful models for identifying the neural mechanisms underlying social behaviour plasticity. The plainfin midshipman (Porichthys notatus) is a teleost fish with two male reproductive morphs that follow widely divergent developmental trajectories and display alternative reproductive tactics (ARTs). Type I males defend territories, court females and provide paternal care, but will resort to cuckoldry if they cannot maintain a territory. Type II males reproduce only through cuckoldry. We sought to disentangle gene expression patterns underlying behavioural tactic, in this case ARTs, from those solely reflective of developmental morph. Using RNA-sequencing, we investigated differential transcript expression in the preoptic area-anterior hypothalamus (POA-AH) of courting type I males, cuckolding type I males and cuckolding type II males. Unexpectedly, POA-AH differential expression was more strongly coupled to behavioural tactic than morph. This included a suite of transcripts implicated in hormonal regulation of vertebrate social behaviour. Our results reveal that divergent expression patterns in a conserved neuroendocrine centre known to regulate social-reproductive behaviours across vertebrate lineages may be uncoupled from developmental history to enable plasticity in the performance of reproductive tactics.


Assuntos
Batracoidiformes/fisiologia , Expressão Gênica , Hipotálamo/metabolismo , Comportamento Sexual Animal , Transcriptoma , Animais , Batracoidiformes/genética , Corte , Proteínas de Peixes/metabolismo , Masculino , Comportamento Social
7.
J Exp Biol ; 217(Pt 14): 2531-9, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24803460

RESUMO

Non-mammalian vertebrates rely on electrical resonance for frequency tuning in auditory hair cells. A key component of the resonance exhibited by these cells is an outward calcium-activated potassium current that flows through large-conductance calcium-activated potassium (BK) channels. Previous work in midshipman fish (Porichthys notatus) has shown that BK expression correlates with seasonal changes in hearing sensitivity and that pharmacologically blocking these channels replicates the natural decreases in sensitivity during the winter non-reproductive season. To test the hypothesis that reducing BK channel function is sufficient to change auditory thresholds in fish, morpholino oligonucleotides (MOs) were used in larval zebrafish (Danio rerio) to alter expression of slo1a and slo1b, duplicate genes coding for the pore-forming α-subunits of BK channels. Following MO injection, microphonic potentials were recorded from the inner ear of larvae. Quantitative real-time PCR was then used to determine the MO effect on slo1a and slo1b expression in these same fish. Knockdown of either slo1a or slo1b resulted in disrupted gene expression and increased auditory thresholds across the same range of frequencies of natural auditory plasticity observed in midshipman. We conclude that interference with the normal expression of individual slo1 genes is sufficient to increase auditory thresholds in zebrafish larvae and that changes in BK channel expression are a direct mechanism for regulation of peripheral hearing sensitivity among fishes.


Assuntos
Limiar Auditivo/fisiologia , Células Ciliadas Auditivas/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Larva/fisiologia , Peixe-Zebra/fisiologia , Animais , Expressão Gênica , Morfolinos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...