Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(17): 13118-13130, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629233

RESUMO

Radiation-induced damage of biological matter is an ubiquitous problem in nature. The influence of the hydration environment is widely discussed, but its exact role remains elusive. Utilising well defined solvated-molecule aggregates, we experimentally observed a hydrogen-bonded water molecule acting as a radiation protection agent for ionised pyrrole, a prototypical aromatic biomolecule. Pure samples of pyrrole and pyrrole(H2O) were outer-valence ionised and the subsequent damage and relaxation processes were studied. Bare pyrrole ions fragmented through the breaking of C-C or N-C covalent bonds. However, for pyrrole(H2O)+, we observed a strong protection of the pyrrole ring through the dissociative release of neutral water or by transferring an electron or proton across the hydrogen bond. Overall, a single water molecule strongly reduces the fragmentation probability and thus the persistent radiation damage of singly-ionised pyrrole.

2.
J Phys Chem A ; 128(9): 1593-1599, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38407935

RESUMO

Water dimer (H2O)2─a vital component of the earth's atmosphere─is an important prototypical hydrogen-bonded system. It provides direct insights into fundamental chemical and biochemical processes, e.g., proton transfer and ionic supramolecular dynamics, occurring in astro- and atmospheric chemistry. Exploiting a purified molecular beam of water dimer and multimass ion imaging, we report the simultaneous detection of all generated ion products of (H2O)2+ fragmentation following single ionization. Detailed information about ion yields and reaction energetics of 13 ion-radical pathways, 6 of which are new, of (H2O)2+ are presented, including strong 18O-isotope effects.

3.
J Phys Chem Lett ; 14(46): 10499-10508, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37970807

RESUMO

Solvent interactions, particularly hydration, are vital in chemical and biochemical systems. Model systems reveal microscopic details of such interactions. We uncover a specific hydrogen-bonding motif of the biomolecular building block indole (C8H7N), tryptophan's chromophore, in water: a strong localized N-H···OH2 hydrogen bond, alongside unstructured solvent interactions. This insight is revealed from a combined experimental and theoretical analysis of the electronic structure of indole in aqueous solution. We recorded the complete X-ray photoemission and Auger spectrum of aqueous-phase indole, quantitatively explaining all peaks through ab initio modeling. The efficient and accurate technique for modeling valence and core photoemission spectra involves the maximum-overlap method and the nonequilibrium polarizable-continuum model. A two-hole electron-population analysis quantitatively describes the Auger spectra. Core-electron binding energies for nitrogen and carbon highlight the specific interaction with a hydrogen-bonded water molecule at the N-H group and otherwise nonspecific solvent interactions.

4.
Nat Commun ; 13(1): 7462, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460654

RESUMO

Interactions between proteins and their solvent environment can be studied in a bottom-up approach using hydrogen-bonded chromophore-solvent clusters. The ultrafast dynamics following UV-light-induced electronic excitation of the chromophores, potential radiation damage, and their dependence on solvation are important open questions. The microsolvation effect is challenging to study due to the inherent mix of the produced gas-phase aggregates. We use the electrostatic deflector to spatially separate different molecular species in combination with pump-probe velocity-map-imaging experiments. We demonstrate that this powerful experimental approach reveals intimate details of the UV-induced dynamics in the near-UV-absorbing prototypical biomolecular indole-water system. We determine the time-dependent appearance of the different reaction products and disentangle the occurring ultrafast processes. This approach ensures that the reactants are well-known and that detailed characteristics of the specific reaction products are accessible - paving the way for the complete chemical-reactivity experiment.


Assuntos
Indóis , Água , Solventes , Hidrogênio , Eletricidade Estática
5.
Nat Commun ; 13(1): 1431, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301292

RESUMO

Fixing molecules in space is a crucial step for the imaging of molecular structure and dynamics. Here, we demonstrate three-dimensional (3D) field-free alignment of the prototypical asymmetric top molecule indole using elliptically polarized, shaped, off-resonant laser pulses. A truncated laser pulse is produced using a combination of extreme linear chirping and controlled phase and amplitude shaping using a spatial-light-modulator (SLM) based pulse shaper of a broadband laser pulse. The angular confinement is detected through velocity-map imaging of H+ and C2+ fragments resulting from strong-field ionization and Coulomb explosion of the aligned molecules by intense femtosecond laser pulses. The achieved three-dimensional alignment is characterized by comparing the result of ion-velocity-map measurements for different alignment directions and for different times during and after the alignment laser pulse to accurate computational results. The achieved strong three-dimensional field-free alignment of [Formula: see text] demonstrates the feasibility of both, strong three-dimensional alignment of generic complex molecules and its quantitative characterization.

6.
Nat Commun ; 11(1): 2546, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439923

RESUMO

The interaction of strong laser fields with matter intrinsically provides a powerful tool for imaging transient dynamics with an extremely high spatiotemporal resolution. Here, we study strong-field ionisation of laser-aligned molecules, and show a full real-time picture of the photoelectron dynamics in the combined action of the laser field and the molecular interaction. We demonstrate that the molecule has a dramatic impact on the overall strong-field dynamics: it sets the clock for the emission of electrons with a given rescattering kinetic energy. This result represents a benchmark for the seminal statements of molecular-frame strong-field physics and has strong impact on the interpretation of self-diffraction experiments. Furthermore, the resulting encoding of the time-energy relation in molecular-frame photoelectron momentum distributions shows the way of probing the molecular potential in real-time, and accessing a deeper understanding of electron transport during strong-field interactions.

7.
J Phys Chem A ; 123(34): 7486-7490, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31319032

RESUMO

Spatial separation of water dimers from water monomers and larger water clusters through the electric deflector is presented. A beam of water dimers with 93% purity and a rotational temperature of 1.5 K was obtained. Following strong-field ionization using a 35 fs laser pulse with a wavelength centered around 800 nm and a peak intensity of 1014 W/cm2, we observed proton transfer and 46% of ionized water dimers broke apart into hydronium ions H3O+ and neutral OH.

8.
Nat Commun ; 10(1): 3364, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358749

RESUMO

Recording molecular movies on ultrafast timescales has been a longstanding goal for unravelling detailed information about molecular dynamics. Here we present the direct experimental recording of very-high-resolution and -fidelity molecular movies over more than one-and-a-half periods of the laser-induced rotational dynamics of carbonylsulfide (OCS) molecules. Utilising the combination of single quantum-state selection and an optimised two-pulse sequence to create a tailored rotational wavepacket, an unprecedented degree of field-free alignment, 〈cos2θ2D〉 = 0.96 (〈cos2θ〉 = 0.94) is achieved, exceeding the theoretical limit for single-pulse alignment. The very rich experimentally observed quantum dynamics is fully recovered by the angular probability distribution obtained from solutions of the time-dependent Schrödinger equation with parameters refined against the experiment. The populations and phases of rotational states in the retrieved time-dependent three-dimensional wavepacket rationalises the observed very high degree of alignment.

9.
J Chem Phys ; 150(24): 244301, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255082

RESUMO

Measurements on the strong-field ionization of carbonyl sulfide molecules by short, intense, 2 µm wavelength laser pulses are presented from experiments where angle-resolved photoelectron distributions were recorded with a high-energy velocity map imaging spectrometer, designed to reach a maximum kinetic energy of 500 eV. The laser-field-free elastic-scattering cross section of carbonyl sulfide was extracted from the measurements and is found in good agreement with previous experiments, performed using conventional electron diffraction. By comparing our measurements to the results of calculations, based on the quantitative rescattering theory, the bond lengths and molecular geometry were extracted from the experimental differential cross sections to a precision better than ±5 pm and in agreement with the known values.

10.
J Chem Phys ; 149(20): 204313, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30501230

RESUMO

The photodissociation dynamics of CH3I and CH2ClI at 272 nm were investigated by time-resolved Coulomb explosion imaging, with an intense non-resonant 815 nm probe pulse. Fragment ion momenta over a wide m/z range were recorded simultaneously by coupling a velocity map imaging spectrometer with a pixel imaging mass spectrometry camera. For both molecules, delay-dependent pump-probe features were assigned to ultraviolet-induced carbon-iodine bond cleavage followed by Coulomb explosion. Multi-mass imaging also allowed the sequential cleavage of both carbon-halogen bonds in CH2ClI to be investigated. Furthermore, delay-dependent relative fragment momenta of a pair of ions were directly determined using recoil-frame covariance analysis. These results are complementary to conventional velocity map imaging experiments and demonstrate the application of time-resolved Coulomb explosion imaging to photoinduced real-time molecular motion.

11.
Rev Sci Instrum ; 89(9): 096110, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278707

RESUMO

A knife edge for shaping a molecular beam is described to improve the spatial separation of the species in a molecular beam by the electrostatic deflector. The spatial separation of different molecular species from each other as well as from atomic seed gas is improved. The column density of the selected molecular-beam part in the interaction zone, which corresponds to higher signal rates, was enhanced by a factor of 1.5, limited by the virtual source size of the molecular beam.

12.
Phys Chem Chem Phys ; 20(30): 20205-20216, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30027949

RESUMO

A photofragmentation study of gas-phase indole (C8H7N) upon single-photon ionization at a photon energy of 420 eV is presented. Indole was primarily inner-shell ionized at its nitrogen and carbon 1s orbitals. Electrons and ions were measured in coincidence by means of velocity map imaging. The angular relationship between ionic fragments is discussed along with the possibility to use the angle-resolved coincidence detection to perform experiments on molecules that are strongly oriented in their recoil-frame. The coincident measurement of electrons and ions revealed fragmentation-pathway-dependent electron spectra, linking the structural fragmentation dynamics to different electronic excitations. Evidence for photoelectron-impact self-ionization was observed.

13.
J Chem Phys ; 148(10): 101103, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29544268

RESUMO

Strong quasi-adiabatic laser alignment of the indole-water-dimer clusters, an amino-acid chromophore bound to a single water molecule through a hydrogen bond, was experimentally realized. The alignment was visualized through ion and electron imaging following strong-field ionization. Molecular-frame photoelectron angular distributions showed a clear suppression of the electron yield in the plane of the ionizing laser's polarization, which was analyzed as strong alignment of the molecular cluster with ⟨cos2 θ2D⟩ ≥ 0.9.

14.
Struct Dyn ; 5(1): 014301, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29430482

RESUMO

We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.

15.
J Chem Phys ; 147(1): 013933, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688450

RESUMO

Laser-induced adiabatic alignment and mixed-field orientation of 2,6-difluoroiodobenzene (C6H3F2I) molecules are probed by Coulomb explosion imaging following either near-infrared strong-field ionization or extreme-ultraviolet multi-photon inner-shell ionization using free-electron laser pulses. The resulting photoelectrons and fragment ions are captured by a double-sided velocity map imaging spectrometer and projected onto two position-sensitive detectors. The ion side of the spectrometer is equipped with a pixel imaging mass spectrometry camera, a time-stamping pixelated detector that can record the hit positions and arrival times of up to four ions per pixel per acquisition cycle. Thus, the time-of-flight trace and ion momentum distributions for all fragments can be recorded simultaneously. We show that we can obtain a high degree of one-and three-dimensional alignment and mixed-field orientation and compare the Coulomb explosion process induced at both wavelengths.

16.
J Chem Phys ; 147(2): 024304, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28711057

RESUMO

We have developed and experimentally demonstrated an improved electrostatic deflector for the spatial separation of molecules according to their dipole-moment-to-mass ratio. The device features a very open structure that allows for significantly stronger electric fields as well as for stronger deflection without molecules crashing into the device itself. We have demonstrated its performance using the prototypical carbonyl sulfide molecule and we discuss opportunities regarding improved quantum-state-selectivity for complex molecules and the deflection of unpolar molecules.

17.
Phys Chem Chem Phys ; 19(30): 19733-19739, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28561126

RESUMO

We demonstrate the experimental realization of impulsive alignment of carbonyl sulfide (OCS) molecules at the Low Density Matter Beamline (LDM) at the free-electron laser FERMI. OCS molecules in a molecular beam were impulsively aligned using 200 fs pulses from a near-infrared laser. The alignment was probed through time-delayed ionization above the sulphur 2p edge, resulting in multiple ionization via Auger decay and subsequent Coulomb explosion of the molecules. The ionic fragments were collected using a time-of-flight mass spectrometer and the analysis of ion-ion covariance maps confirmed the correlation between fragments after Coulomb explosion. The analysis of the CO+ and S+ channels allowed us to extract the rotational dynamics, which is in agreement with our theoretical description as well as with previous experiments. This result opens the way for a new class of experiments at LDM within the field of coherent control of molecules with the possibilities that a precisely synchronized optical-pump XUV-probe laser setup like FERMI can offer.

18.
Chemphyschem ; 17(22): 3740-3746, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27538031

RESUMO

A strong adiabatic mixed-field orientation (Nup /Ntot =0.882) of carbonyl sulfide (OCS) molecules in their absolute ground state is experimentally demonstrated. OCS is oriented in a combination of nonresonant laser and static electric fields inside a two-plate velocity map imaging spectrometer. The transition from nonadiabatic to adiabatic orientation for the rotational ground state is studied by varying the applied laser intensity and static electric field. Above static electric field strengths of 10 kV cm-1 and laser intensities of 1011 W cm-2 the observed degree of orientation reaches a plateau. These results are in good agreement with computational solutions of the time-dependent Schrödinger equation.

19.
Struct Dyn ; 3(4): 043207, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27051675

RESUMO

Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I(21+). The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse.

20.
Phys Rev Lett ; 114(10): 103003, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25815928

RESUMO

We demonstrate strong laser-field-free orientation of absolute-ground-state carbonyl sulfide molecules. The molecules are oriented by the combination of a 485-ps-long nonresonant laser pulse and a weak static electric field. The edges of the laser pulse create a coherent superposition of two rotational states resulting in revivals of strong transient molecular orientation after the laser pulse. The experimentally attained degree of orientation ⟨cosθ⟩≈0.6 corresponds to the theoretical maximum for mixing of the two states. Switching off the dc field would provide the same orientation completely field free.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...