Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(3)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36992430

RESUMO

Bacteriophage (phage) therapy is a promising alternative antimicrobial strategy with the potential to transform the way bacterial infections are treated. In the United Kingdom, phages are classed as a biological medicine. Although no phages are licensed for UK use, they may be used as unlicensed medicinal products where licensed alternatives cannot meet a patient's clinical needs. In the last 2 years, 12 patients in the UK have received phage therapy, and there is burgeoning clinical interest. Currently, clinical phage provision in the UK is ad hoc and relies upon networking with international sources of phages. The provision of phage therapy in the UK will not progress beyond an increasing number of ad hoc cases until an onshore sustainable and scalable source of well-characterised phages manufactured in accordance with Good Manufacturing Practice (GMP) is established. Here, we present an exciting new collaboration between UK Phage Therapy, the Centre for Phage Research at University of Leicester, CPI, and Fixed Phage. These partners, and others as we develop, will establish sustainable, scalable, and equitable phage therapy provision in the UK. We set out a vision for how phage therapy will be integrated into the NHS and healthcare more broadly, including the complementarity between licensed (cocktail) and unlicensed (personalised) phage preparations. Key elements of phage therapy infrastructure in the UK will be GMP phage manufacturing, a national phage library, and a national clinical phage centre. Together, this infrastructure will support NHS microbiology departments to develop and oversee phage therapy provision across the UK. As it will take time to deliver this, we also describe considerations for clinicians seeking to use unlicensed phage therapy in the interim. In summary, this review sets out a roadmap for the delivery of clinical phage therapy to the UK, the benefits of which we hope will reverberate for patients for decades to come.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Humanos , Infecções Bacterianas/terapia , Preparações Farmacêuticas , Reino Unido
2.
Environ Pollut ; 158(10): 3225-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20724046

RESUMO

Denitrification is a process that reduces nitrogen levels in headwaters and other streams. We compared nirS and nirK abundances with the absolute rate of denitrification, the longitudinal coefficient of denitrification (i.e., Kden, which represents optimal denitrification rates at given environmental conditions), and water quality in seven prairie streams to determine if nir-gene abundances explain denitrification activity. Previous work showed that absolute rates of denitrification correlate with nitrate levels; however, no correlation has been found for denitrification efficiency, which we hypothesise might be related to gene abundances. Water-column nitrate and soluble-reactive phosphorus levels significantly correlated with absolute rates of denitrification, but nir-gene abundances did not. However, nirS and nirK abundances significantly correlated with Kden, as well as phosphorus, although no correlation was found between Kden and nitrate. These data confirm that absolute denitrification rates are controlled by nitrate load, but intrinsic denitrification efficiency is linked to nirS and nirK gene abundances.


Assuntos
Proteínas de Bactérias/genética , Desnitrificação/genética , Nitrogênio/análise , Rios/química , Poluentes Químicos da Água/análise , Ecossistema , Rios/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...