Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(49): e2304594, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37651555

RESUMO

The quick diffusion of nanomedicines in the polysaccharide-gel-filling tumor interstitium and precise active targeting are two major obstacles that have not yet been overcome. Here, a poly(L-glutamyl-L-lysine(EK) (p(EK))-camouflaged, doxorubicin (Dox)-conjugated nanomedicine is developed to demonstrate the underlying mechanism of zwitterionic shell in synchronous barrier-penetration and biconditional active targeting. The zwitterionic p(EK) shell liquifies its surrounding water molecules in the polysaccharide gel of tumor interstitium, leading to five times faster diffusion than the pegylated Doxil with similar size in tumor tissue. Its doped sulfonate groups lead to more precise active tumor-targeting than disialoganglioside (GD2) antibody by meeting the dual requirements of tumor microenvironment (TME) pH and overexpression of GD2 on tumor. Consequently, the concentrations of the nanomedicine in tumor are always higher than in life-supported organs in whole accumulation process, reaching over ten times higher Dox in GD2-overexpressing MCF-7 tumors than in life-supporting organs. Furthermore, the nanomedicine also avoids anti-GD2-like accumulation in GD2-expressing kidney in a mouse model. Thus, the nanomedicine expands the therapeutic window of Doxil by more than three times and eliminates tumors with negligible myocardial and acute toxicity. This new insight paves an avenue to design nanodelivery systems for highly precise and safe chemotherapy.


Assuntos
Nanomedicina , Neoplasias , Camundongos , Animais , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Polissacarídeos , Microambiente Tumoral
2.
Langmuir ; 37(48): 14015-14025, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34812041

RESUMO

Chemotherapeutic nanodrugs have to penetrate through many biological barriers before reaching the tumor cells. Thus, high stability of the nanocarrier before reaching tumor cells and fast release of the carried drugs in targeted tumor cells are required. In this work, inspired by the intrinsic zwitterionic surface property, mainly formed by glutamic acid and lysine residues, of the plasma protein surface, the zwitterionic poly(glutamyl lysine-co-aspartic acid-co-cysteine) peptide (P(EK-D-C)) was synthesized for conjugating n-mercaptoalkanoic acid (MA) with different chain lengths on cysteine residues through a disulfide linkage to load hydrophobic doxorubicin (DOX). The results showed that the slightly negative-biased zwitterionic nanodrugs were very stable in both resistance to nonspecific plasma protein adsorption and prevention of premature DOX release at physiological pH 7.4 due to the zwitterionic polypeptide shell and the sharp contrast in polarity between the shell and DOX-loaded core, while they can quickly release the loaded DOX through responding to both low pH values in the endosome/lysosome and high glutathione concentrations in the tumor cell cytoplasm. Furthermore, the enhanced internalization of these nanodrugs led to about 60% higher in vitro cytotoxicity against MCF-7 cells at pH 6.7 than at pH 7.4, whereas the in vitro cytotoxicity of DOX·HCl at pH 6.7 was only 75% of the value at pH 7.4. In vivo results revealed that the stable nanodrugs conjugated with the long hydrophobic 12-mercaptododecanoic acid had higher tumor inhibition rate and lower systematic toxicity on MCF-7 tumor-bearing mice than the less stable nanodrugs conjugated with the short 8-mercaptooctaoic acid and were significantly superior to DOX·HCl. These results indicate that the combination of high stability in circulation and fast release in tumor cells of nanodrugs can enhance high efficacy targeted chemotherapy. This pH/redox-sensitive zwitterionic polypeptide nanocarrier might provide an excellent vehicle for solid tumor treatment.


Assuntos
Doxorrubicina , Nanopartículas , Animais , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Peptídeos
3.
ACS Appl Mater Interfaces ; 12(41): 46639-46652, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32893614

RESUMO

To augment the antitumor efficacy and minimize the significant side effects of chemotherapeutic drugs on health organs, a novel albumin-mimicking nanodrug, which is based on zwitterionic poly(glutamatyl lysine-co-cysteine) peptides scaffold, is developed to enhance pH-triggered tumor targeting via prolonging circulation time and accelerating cellular internalization. Results showed that the internalization of the nanodrug by MCF-7 cells is much faster than that by Doxil and even comparable to that by free doxorubicin (Dox) at tumor microenvironmental pH 6.7, whereas the internalization of the nanodrug is only 27.4 ± 7.6% of the Doxil by RAW-264.7 cells. Moreover, the significantly prolonged circulation time of the "stealthy" nanodrug was also comparable to that of the long circulating Doxil. As a result, the accumulation of the nanodrug in the tumor is much higher than that in the liver and kidney before the circulation half-life, which is significantly different from most other nanodrugs accumulated in the liver and kidney in this time scale. The tumor inhibition rate of the nanodrug was much higher than that of Doxil (93.2 ± 3.0% vs 54.2 ± 6.5%) after 18 day treatment, while the average bodyweight of the mice treated by the nanodrug was 26.9 ± 6.7% higher than that by Doxil. This indicated that the synergetic effect of long circulation time and fast cellular internalization of the nanodrug can significantly augment tumor targeting. This method might rejuvenate the traditional chemotherapeutic treatment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Nanopartículas/química , Peptídeos/química , Animais , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Propriedades de Superfície , Fatores de Tempo , Microambiente Tumoral/efeitos dos fármacos
4.
Langmuir ; 36(26): 7181-7189, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32551657

RESUMO

Albumin mimics could be an attractive platform for nanodrug carriers through systematic administration because of high safety and plentiful properties to be adjusted for a high drug efficacy, such as pH-triggered targeting cellular uptake and drug release. In this work, negative-biased zwitterionic nanodrug carriers based on zwitterionic polypeptide chains that mimic albumin were prepared, which have an outermost layer of zwitterionic glutamic acid (E) and lysine (K) pairs with a small amount of aspartic acid (D) to adjust the overall ζ potential. On the other hand, doxorubicin (Dox) was encapsulated in a hydrophobic core by 11-maleimidoundecanoic acid covalently linked with additional cysteine (C) residues on the polypeptide. The results show that the negative-biased zwitterionic nanodrug carriers can sensitively enhance the cellular uptake in responding to a pH change from 7.4 to 6.7 without reversing the ζ potential to a positive charge, leading to accelerating the Dox release rate in a slightly acidic environment through the polypeptide secondary structure change. Moreover, the anionic nanodrug carrier can also be easily enzymatically digested by trypsin for quick drug release. In short, this negative-biased zwitterionic nanodrug delivery vector could be an ideal candidate for a safer tumor inhibition with a high efficacy than conventional synthetic polymer-based ones.


Assuntos
Portadores de Fármacos , Nanopartículas , Doxorrubicina , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...