Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 63(7): B16-B23, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437251

RESUMO

Thickness measurements of objects, especially transparent and semi-transparent objects, are essential for their characterization and identification. However, in the case of occluded objects, the optical thickness determination becomes difficult, and an indirect way must be devised. Thermal loading of the objects changes their opto-thermal properties, which will be reflected as a change in their optical thickness. The key to quantifying such occluded objects lies in collecting these opto-thermal signatures. This could be achieved by imaging the changes occurring to a probe wavefront passing through the object while it is being thermally loaded. Digital holographic interferometry is an ideal tool for observing phase changes, as it can be used to compare wavefronts recorded at different instances of time. Lens-less Fourier transform digital holographic imaging provides the phase information from a single Fourier transform of the recorded hologram and can be used to quantify occluded phase objects. Here we describe a technique for the measurement of change in optical thickness of thermally loaded occluded phase samples using lens-less Fourier transform digital holography and machine learning. The advantage of the proposed technique is that it is a single shot, lens-less imaging modality for quasi-real-time quantification of phase samples behind thin occlusions.

2.
ACS Omega ; 8(16): 14365-14370, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37125139

RESUMO

Myopia (nearsightedness) and presbyopia (aging eye) are the most common refractive errors of the human eye. Technology has advanced toward correcting aberration using various surgical procedures, including laser surgery, as well as prescribing corrective lenses. Hence, the effect of various laser wavelengths on the eye has been extensively studied over the last few decades. Usually, excimer lasers are used for this purpose, which increases the cost of the procedure because they are unique and difficult to manufacture and require regular maintenance. Due to the absorption properties, visible wavelengths do not interact with the corneal layers and hence are currently not used for eye surgery. This study presents the first clinical evidence that a 532 nm laser in combination with an eye-safe fluorescein dye that is in wide clinical use in ophthalmology can be utilized for high-precision ablation purposes due to the photochemical reaction that occurs on an ex vivo porcine eye. Our results show the promise of utilizing inexpensive visible wavelength lasers in the ablation of biological tissues, reducing the high costs of ophthalmological surgical procedures, as well as in other applications.

4.
Opt Express ; 30(16): 29234-29245, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299102

RESUMO

In this manuscript, we describe the development of a single shot, self-referencing wavefront division, multiplexing digital holographic microscope employing LED sources for large field of view quantitative phase imaging of biological samples. To address the difficulties arising while performing interferometry with low temporally coherent sources, an optical arrangement utilizing multiple Fresnel Biprisms is used for hologram multiplexing, enhancing the field of view and increasing the signal to noise ratio. Biprisms offers the ease of obtaining interference patterns by automatically matching the path length between the two off-axis beams. The use of low temporally coherent sources reduces the speckle noise and the cost, and the form factor of the setup. The developed technique was implemented using both visible and UV LEDs and tested on polystyrene microspheres and human erythrocytes.


Assuntos
Holografia , Poliestirenos , Humanos , Microscopia de Contraste de Fase , Holografia/métodos , Interferometria/métodos , Eritrócitos
6.
Sci Rep ; 12(1): 6387, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35430597

RESUMO

Light propagating along a reversed path experiences the same transmission coefficient as in the forward direction, independent of the path complexity. This is called the optical reciprocity of light, which is valid for not too intense scattering media as well. Hence, by utilizing the reciprocity principle, the proposed novel technique can achieve axially and laterally tunable focus, non-invasively, through a scattering media without a priori knowledge or modeling of its scattering properties. Moreover, the uniqueness of the proposed technique lies in the fact that the illumination and detection are on the same side of the scattering media.

7.
Opt Express ; 29(4): 5798-5807, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726112

RESUMO

Time multiplexing is a super-resolution technique that sacrifices time to overcome the resolution reduction obtained because of diffraction. There are many super resolution methods based on time multiplexing, but all of them require a priori knowledge of the time changing encoding mask, which is projected on the object and used to encode and decode the high-resolution information. In this paper, we present a time multiplexing technique that does not require the a priori knowledge on the projected encoding mask. First, the theoretical concept of the technique is demonstrated; then, numerical simulations and experimental results are presented.

8.
Biomed Opt Express ; 9(6): 2779-2784, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30258690

RESUMO

Digital holographic microscopy is the state of the art quantitative phase imaging of micro-objects including living cells. It is an ideal tool to image and quantify cell thickness profiles with nanometer thickness resolution. Digital holographic techniques usually are implemented using a two-beam setup that may be bulky and may not be field portable. Self-referencing techniques provide compact geometry but suffer from a reduction of the field of view. Here, we discuss the development of a wavefront division digital holographic microscope providing the full field of view with a compact system. The proposed approach uses a wavefront division module consisting of two lenses. The developed microscope is tested experimentally by measuring the physical and mechanical properties of red blood cells.

9.
J Biomed Opt ; 22(12): 1-11, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29235271

RESUMO

Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes.


Assuntos
Eritrócitos/citologia , Holografia , Microscopia de Interferência , Humanos
10.
Opt Lett ; 40(16): 3743-6, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26274649

RESUMO

Interferometric microscopy has grown into a very potent tool for quantitative phase imaging of biological samples. Among the interfermetric methods, microscopy by digital holography is one of the most effective techniques, especially for studying dynamics of cells. Imaging of cell fluctuations requires digital holographic setups with high temporal stability. Common path setups in which the object and the reference beams encounter the same set of optical elements provide better temporal stability compared to two-beam setups. Here, we present a compact, easy-to-implement, common path digital holographic microscope based on Sagnac interferometer geometry. The microscope is implemented using a diode laser module employing a CCD array or a webcam sensor to record holograms. The system was tested for three-dimensional imaging capability, numerical focusing ability, and temporal stability. Sub-nanometer temporal stability without external vibration isolation components was obtained in both cases. The higher temporal stability makes the microscope compatible to image cell fluctuations, which is demonstrated by imaging the oscillation of the cell membrane of human red blood cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...