Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 9: 205, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20682043

RESUMO

During the G2 phase of the cell cycle, the Aurora-A kinase plays an important role in centrosome maturation and progression to mitosis. In this study, we show in colorectal cell lines that Aurora-A expression is downregulated in response to topoisomerase I inhibition. Using chromatin immunoprecipitation assays, we have observed that the Myc transcription factor and its Max binding partner are associated with the Aurora-A promoter during the G2 phase of the cell cycle. RNA interference experiments indicated that Myc is involved in the regulation of the Aurora-A gene. Following topoisomerase I inhibition, the expression of Myc decreased whereas Mad was upregulated, and the association of Myc and Max with the promoter of the kinase was inhibited. In parallel, an increased association of Mad and Miz-1 was detected on DNA, associated with an inhibition of the recruitment of transcriptional coactivators. Interestingly, a gain of H3K9 trimethylation and HP1gamma recruitment was observed on the Aurora-A promoter following sn38 treatment, suggesting that this promoter is located within SAHF foci following genotoxic treatment. Since Aurora-A is involved in centrosome maturation, we observed as expected that topoisomerase I inhibition prevented centrosome separation but did not affect their duplication. As a consequence, this led to G2 arrest and senescence induction.These results suggest a model by which the Aurora-A gene is inactivated by the G2 checkpoint following topoisomerase I inhibition. We therefore propose the hypothesis that the coordinated overexpression of Myc and Aurora-A, together with a downregulation of Mad and Miz-1 should be tested as a prognosis signature of poor responses to topoisomerase I inhibitors.


Assuntos
DNA Topoisomerases Tipo I/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Aurora Quinases , Sequência de Bases , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Primers do DNA , Humanos , Regiões Promotoras Genéticas
2.
Hepatology ; 44(5): 1296-307, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17058241

RESUMO

The molecular mechanisms underlying the progression of cirrhosis toward hepatocellular carcinoma were investigated by a combination of DNA microarray analysis and literature data mining. By using a microarray screening of suppression subtractive hybridization cDNA libraries, we first analyzed genes differentially expressed in tumor and nontumor livers with cirrhosis from 15 patients with hepatocellular carcinomas. Seventy-four genes were similarly recovered in tumor (57.8% of differentially expressed genes) and adjacent nontumor tissues (64% of differentially expressed genes) compared with histologically normal livers. Gene ontology analyses revealed that downregulated genes (n = 35) were mostly associated with hepatic functions. Upregulated genes (n = 39) included both known genes associated with extracellular matrix remodeling, cell communication, metabolism, and post-transcriptional regulation gene (e.g., ZFP36L1), as well as the tumor suppressor gene menin (multiple endocrine neoplasia type 1; MEN1). MEN1 was further identified as an important node of a regulatory network graph that integrated array data with array-independent literature mining. Upregulation of MEN1 in tumor was confirmed in an independent set of samples and associated with tumor size (P = .016). In the underlying liver with cirrhosis, increased steady-state MEN1 mRNA levels were correlated with those of collagen alpha2(I) mRNA (P < .01). In addition, MEN1 expression was associated with hepatic stellate cell activation during fibrogenesis and involved in transforming growth factor beta (TGF-beta)-dependent collagen alpha2(I) regulation. In conclusion, menin is a key regulator of gene networks that are activated in fibrogenesis associated with hepatocellular carcinoma through the modulation of TGF-beta response.


Assuntos
Carcinoma Hepatocelular/genética , Colágeno Tipo I/metabolismo , Hepatócitos/fisiologia , Cirrose Hepática/metabolismo , Proteínas Proto-Oncogênicas/genética , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Biblioteca Gênica , Genes Supressores de Tumor , Humanos , Cirrose Hepática/complicações , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas/biossíntese , RNA Mensageiro/biossíntese , Transfecção , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...