Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 13(7): 4744-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23901499

RESUMO

Nanofibers of conducting polymers, as polyaniline (PANI), have received a great deal of attention by the scientific community for their potential applications (electronic, magnetic, biomedical, optical fields). Recently the electrospinning has emerged as a promising technique to produce wires and fibers of polymers with diameters ranging from 10 nm to 10 microm. PANI shows poor processability by electrospinning due to its low solubility in common solvents. However, it is possible to spin polyaniline nanofibers adding another polymer to the organic solutions, generally an insulator, necessary to increase the viscosity of the polymeric solution to be spun. Unfortunately, the presence of an insulator copolymer decreases the fibers conductivity. The key factor to obtain fibers of good quality (high conductivity and a narrow distribution of the diameters) is to reduce the amount of insulator copolymer in the spun process. Accordingly, we prepared raw PANI following different synthetic methods to be compared, aiming at the best optimized protocol in terms of easy solubility and enhanced spinning behavior of the polymers achieved. All the materials have been characterized by FT-IR and UV-VIS spectroscopies. The spun samples obtained have been characterized by SEM to evaluate the fiber morphology and complex impedance spectroscopy (EIS) in order to measure the electrical conductivity.


Assuntos
Compostos de Anilina/química , Cristalização/métodos , Eletroquímica/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Rotação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA