Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 13(18): 1895-1908, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30079563

RESUMO

In a continuing search for curcuminoid (CUR) compounds with antitumor activity, a novel series of heterocyclic CUR-BF2 adducts and CUR compounds based on indole, benzothiophene, and benzofuran along with their aryl pyrazoles were synthesized. Computational docking studies were performed to compare binding efficiency to target proteins involved in specific cancers, namely HER2, proteasome, VEGFR, BRAF, and Bcl-2, versus known inhibitor drugs. The majority presented very good binding affinities, similar to, and even more favorable than those of known inhibitors. The indole-based CUR-BF2 and CUR compounds and their bis-thiocyanato derivatives exhibited high anti-proliferative and apoptotic activity by in vitro bioassays against a panel of 60 cancer cell lines, more specifically against multiple myeloma (MM) cell lines (KMS11, MM1.S, and RPMI-8226) with significantly lower IC50 values versus healthy PBMC cells; they also exhibited higher anti-proliferative activity in human colorectal cancer cells (HCT116, HT29, DLD-1, RKO, SW837, and Caco2) than the parent curcumin, while showing notably lower cytotoxicity in normal colon cells (CCD112CoN and CCD841CoN).


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Compostos Heterocíclicos/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Curcumina/síntese química , Curcumina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
2.
FASEB J ; 21(10): 2520-7, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17403939

RESUMO

Globoid cell leukodystrophy (GLD), also known as Krabbe disease, is a devastating, degenerative neurological disorder. It is inherited as an autosomal recessive trait caused by loss-of-function mutations in the galactocerebrosidase (GALC) gene. Previously, we have shown that peripheral injection of recombinant GALC, administered every other day, results in a substantial improvement in early clinical phenotype in the twitcher mouse model of GLD. While we did detect active enzyme in the brain following peripheral administration, most of the administered enzyme was localized to the periphery. Given the substantial central nervous system (CNS) involvement in this disease, we were interested in determining whether or not a single-dose administration of the recombinant enzyme directly to the CNS, which could potentially be achieved clinically, would result in any substantial improvement. Following intracerebroventricular (i.c.v.) administration of GALC we noted a significant, 16.5%, reduction in the GALC substrate psychosine, the abnormal accumulation of which is believed to play a pivotal role in the CNS pathology observed in this disease. Moreover, recombinant GALC was found not only in periventricular regions but also at sites distant to the injection such as the cerebral cortex and cerebellum. Most importantly, animals receiving a single i.c.v. dose of the enzyme at postnatal day 20 survived up to 51 days, which compares favorably to the control twitcher animals, which normally only live to postnatal day 40/42. These results indicate that even a single i.c.v. administration of the recombinant enzyme can have significant clinical impact and suggests that other lysosomal storage disorders with significant CNS involvement may similarly benefit.


Assuntos
Galactosilceramidase/uso terapêutico , Leucodistrofia de Células Globoides/tratamento farmacológico , Animais , Encéfalo/enzimologia , Encéfalo/patologia , Galactosilceramidase/administração & dosagem , Galactosilceramidase/deficiência , Galactosilceramidase/genética , Galactosilceramidase/farmacocinética , Injeções Intraventriculares , Cinética , Leucodistrofia de Células Globoides/enzimologia , Leucodistrofia de Células Globoides/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Especificidade por Substrato , Distribuição Tecidual
3.
J Biol Chem ; 281(41): 30471-8, 2006 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16912050

RESUMO

The deposition of beta-amyloid in the brain is a pathological hallmark of Alzheimer disease (AD). Normally, the accumulation of beta-amyloid is prevented in part by the activities of several degradative enzymes, including the endothelin-converting enzymes, neprilysin, insulin-degrading enzyme, and plasmin. Recent reports indicate that another metalloprotease, angiotensin-converting enzyme (ACE), can degrade beta-amyloid in vitro and in cellular overexpression experiments. In addition, ACE gene variants are linked to AD risk in several populations. Angiotensin-converting enzyme, neprilysin and endothelin-converting enzyme function as vasopeptidases and are the targets of drugs designed to treat cardiovascular disorders, and ACE inhibitors are commonly prescribed. We investigated the potential physiological role of ACE in regulating endogenous brain beta-amyloid levels for two reasons: first, to determine whether beta-amyloid degradation might be the mechanism by which ACE is associated with AD, and second, to determine whether ACE inhibitor drugs might block beta-amyloid degradation in the brain and potentially increase the risk for AD. We analyzed beta-amyloid accumulation in brains from ACE-deficient mice and in mice treated with ACE inhibitors and found that ACE deficiency did not alter steady-state beta-amyloid concentration. In contrast, beta-amyloid levels are significantly elevated in endothelin-converting enzyme and neprilysin knock-out mice, and inhibitors of these enzymes cause a rapid increase in beta-amyloid concentration in the brain. The results of these studies do not support a physiological role for ACE in the degradation of beta-amyloid in the brain but confirm roles for endothelin-converting enzyme and neprilysin and indicate that reductions in these enzymes result in additive increases in brain amyloid beta-peptide levels.


Assuntos
Peptídeos beta-Amiloides/química , Ácido Aspártico Endopeptidases/metabolismo , Regulação Enzimológica da Expressão Gênica , Metaloendopeptidases/metabolismo , Neprilisina/fisiologia , Peptidil Dipeptidase A/metabolismo , Administração Oral , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Enzimas Conversoras de Endotelina , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Camundongos Knockout
4.
FASEB J ; 19(11): 1549-51, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15987783

RESUMO

Globoid cell leukodystrophy (GLD) or Krabbe disease is a devastating, degenerative neurological disorder caused by mutations in the galactosylceramidase (GALC) gene that severely affect enzyme activity. Currently, treatment options for this disorder are very limited. Enzyme replacement therapy (ERT) has been shown to be effective in lysosomal storage disorders with predominantly peripheral manifestations such as type I Gaucher's and Fabry's disease. Little however is known about the possible benefit of ERT in GLD, which has a substantial central nervous system component. In this study, we examined the effect of peripheral GALC injections in the twitcher mouse model of the disease. Although we were unable to block the precipitous decline that normally occurs just before death, we did observe significant early improvements in motor performance, a substantial attenuation in the initial failure to thrive, and an increase in life span. Immunohistochemical and activity analyses demonstrated GALC uptake in multiple tissues, including the brain. This was associated with a decrease in the abnormal accumulation of the GALC substrate psychosine, which is thought to play a pivotal role in disease pathology. These results indicate that peripheral ERT is likely to be beneficial in GLD.


Assuntos
Galactosilceramidase/uso terapêutico , Leucodistrofia de Células Globoides/tratamento farmacológico , Animais , Barreira Hematoencefálica , Linhagem Celular , Modelos Animais de Doenças , Insuficiência de Crescimento/tratamento farmacológico , Marcha/efeitos dos fármacos , Galactosilceramidase/análise , Humanos , Imuno-Histoquímica , Leucodistrofia de Células Globoides/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Psicosina/análise , Proteínas Recombinantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...