Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Ocul Oncol Pathol ; 9(5-6): 152-157, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38089176

RESUMO

Introduction: Vision loss is common in patients treated with radiotherapy for uveal melanoma. With proton beam irradiation (PBI), the prescribed dose is delivered to the tumor with a sharp dose reduction outside the target volume. However, radiation complications are likely to develop when tumors are located near the optic nerve or fovea. Treatment with light-activated AU-011 (belzupacap sarotalocan), an investigational drug which specifically targets tumor cells, may avoid these complications. We evaluated outcomes in a historical group of patients who fit eligibility criteria for AU-011 therapy and were treated with PBI. Methods: A consecutive series of patients who received PBI for small choroidal melanoma at a single center between 1986 and 2016 were identified. Consistent with eligibility criteria in clinical trials of AU-011, patients were included when tumor dimensions did not exceed 2.5 mm in maximum thickness and 10.0 mm in largest basal diameter (LBD). Snellen visual acuities were converted to logMAR for analysis. Visual acuity outcomes were analyzed in patients with an initial acuity of logMAR 0.7 or better (equivalent to Snellen 20/100). Rates of visual acuity loss and mortality were calculated using the Kaplan-Meier method. Acuity loss by tumor location was compared using log-rank testing. Rates of tumor recurrence, neovascular glaucoma (NVG), and eye loss were also described. Results: Two hundred and 22 patients were included in the study. The median age was 60.7 years (range 21.3-94.8 years). Median tumor thickness was 2.0 mm (range 1.2-2.5 mm), and median LBD was 8.0 mm (range 4.0-10.0 mm). Median follow-up was 6.9 years (range 1.0-30.2 years). In 204 patients with a baseline logMAR visual acuity of 0.7 or better, the mean baseline acuity was 0.15 (equivalent to Snellen 20/25), which decreased to 0.52 (approximately Snellen 20/70) by 5 years after PBI. Visual outcomes were significantly worse for patients with tumors located within 3 mm of the optic disc and/or fovea. Tumor recurrence (1.4%), NVG (4.5%), and eye loss (2.7%) were uncommon. Discussion: Despite the advantageous dose distribution of protons, over half of patients with small choroidal melanomas located near the optic disc or fovea had a visual acuity equivalent to 20/80 or worse at 5 years after PBI. Treatment with AU-011 may allow better vision preservation in small tumors that carry a high risk of vision loss with radiotherapy.

2.
Med Phys ; 50(11): 7093-7103, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37782071

RESUMO

BACKGROUND: Proton therapy is an effective treatment for ocular melanoma, and other tumors of the eye. The fixed horizontal beamline dedicated to ocular treatments at Massachusetts General Hospital was originally commissioned in 2002, with much of the equipment, safety features, and practices dating back to an earlier implementation at Harvard Cyclotron in the 1970s. PURPOSE: To describe the experience of reevaluation and enhancement of the safety environment for one of the longest continuously operating proton therapy programs. METHODS: Several enhancements in quality control had been introduced throughout the years of operation, as described in this manuscript, to better align the practice with the evolving standards of proton therapy and the demands of a modern hospital. We spotlight the design and results of the failure mode and effect analysis (FMEA), and subsequent actions introduced to mitigate the modes associated with elevated risk. The findings of the FMEA informed the specifications for the new software application, which facilitated the improved management of the treatment workflow and the image-guidance aspects of ocular treatments. RESULTS: Eleven failure modes identified as having the highest risk are described. Six of these were mitigated with the clinical roll-out of a new application for image-guided radiation therapy (IGRT). Others were addressed through task automation, the broader introduction of checklists, and enhancements in pre-treatment staff-led time-out. CONCLUSIONS: Throughout the task of modernizing the safety system of our dedicated ocular beamline, FMEA proved to be an effective instrument in soliciting inputs from the staff about safety and workflow concerns, helping to identify steps associated with elevated failure risks. Risks were reduced with the clinical introduction of a new IGRT application, which integrates quality management tools widely recognized for their role in risk mitigation: automation of the data transfer and workflow steps, and with the introduction of checklists and redundancy cross-checks.


Assuntos
Neoplasias Oculares , Terapia com Prótons , Humanos , Prótons , Síncrotrons , Neoplasias Oculares/radioterapia , Ciclotrons
4.
Int J Radiat Oncol Biol Phys ; 115(2): 501-510, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878716

RESUMO

PURPOSE: To characterize dose distributions with 125I plaque brachytherapy compared with proton radiation therapy for ocular melanoma for relevant clinical scenarios, based on tumor base diameter (d), apical height (h), and location. METHODS AND MATERIALS: Plaque and proton treatment plans were created for 4 groups of cases: (1) REF: 39 instances of reference midsize circular-base tumor (d = 12 mm, h = 5 mm), in locations varying by retinal clock hours and distance to fovea, optic disc, and corneal limbus; (2) SUP: 25 superiorly located; (3) TEMP: 25 temporal; and (4) NAS: 25 nasally located tumors that were a fixed distance from the fovea but varying in d (6-18 mm) and h (3-11 mm). For both modalities, 111 unique scenarios were characterized in terms of the distance to points of interest, doses delivered to fovea, optic disc, optic nerve at 3 mm posterior to the disc (ON@3mm), lens, and retina. Comparative statistical evaluation was performed with the Mann-Whitney U test. RESULTS: Superior dose distributions favored plaque for sparing of (1) fovea in large (d + h ≥ 21 mm) NAS tumors; (2) ON@3mm in REF cases located ≤4 disc diameters from disc, and in NAS overall. Protons achieved superior dose sparing of (1) fovea and optic disc in REF, SUP, and TEMP; (2) ON@3mm in REF >4 disc diameters from disc, and in SUP and TEMP; and (3) the lens center overall and lens periphery in REF ≤6 mm from the corneal limbus, and in TEMP with h = 3 mm. Although protons could completely spare sections of the retina, plaque dose was more target conformal in the high-dose range (50% and 90% of prescription dose). CONCLUSIONS: Although comparison between plaque and proton therapy is not straightforward because of the disparity in dose rate, prescriptions, applicators, and delivery techniques, it is possible to identify distinctions between dose distributions, which could help inform decisions by providers and patients.


Assuntos
Braquiterapia , Neoplasias Oculares , Melanoma , Terapia com Prótons , Humanos , Braquiterapia/métodos , Prótons , Dosagem Radioterapêutica , Neoplasias Oculares/radioterapia , Neoplasias Oculares/patologia , Melanoma/radioterapia , Melanoma/patologia
5.
Ophthalmol Retina ; 6(11): 1089-1097, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35589076

RESUMO

OBJECTIVE: To compare outcomes in a large patient cohort with small-medium tumors located within 1 disc diameter (DD) of the optic nerve and/or fovea treated with 50 Gy or 70 Gy proton therapy. DESIGN: Retrospective cohort study. SUBJECTS: A total of 1120 patients with uveal melanomas ≤ 15 mm in largest basal diameter, ≤ 5 mm in height, located within 1 DD of the optic nerve and/or fovea, who received primary treatment with protons between 1975 and 2016 at Massachusetts Eye and Ear/Massachusetts General Hospital. METHODS: The rates of outcomes were estimated using the Kaplan-Meier method. Differences between the radiation dose groups were tested using the log-rank test. MAIN OUTCOME MEASURES: Local tumor recurrence, melanoma-related mortality, and visual acuity preservation (≥ 20/200, ≥ 20/40). RESULTS: Local tumor recurrence was observed in 1.8% of the 50 Gy group and 1.5% of the 70 Gy group. The median time to recurrence was 30.7 months for patients treated with 50 Gy and 32.0 months for those treated with 70 Gy (P = 0.28). Five-year rates of vision retention (≥20/40, ≥ 20/200) were 19.4% and 49.3% for patients treated with 50 Gy and 16.4% and 40.7% in those treated with 70 Gy. Ten-year rates of melanoma-related mortality were 8.4% in the 50 Gy group and 8.9% in the 70 Gy group (P = 0.47). CONCLUSIONS: Comparable rates of local control are achieved treating small-medium tumors near the optic nerve and/or fovea with 50 Gy or 70 Gy proton therapy, supporting the use of the lower dose in patients with these tumor characteristics.


Assuntos
Melanoma , Prótons , Humanos , Recidiva Local de Neoplasia , Estudos Retrospectivos , Resultado do Tratamento
6.
Sarcoma ; 2022: 5540615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345672

RESUMO

Background: External beam radiation therapy (RT) for retroperitoneal sarcoma often requires treatment of large target volumes close to critical normal tissues. Radiation may be limited by adjacent organs at risk (OAR). Intensity-modulated radiation therapy has been shown to improve target coverage and reduce doses to OAR. Objectives: To compare target coverage and dose to OAR with 3D conformal proton therapy (3D CPT), intensity-modulated proton therapy (IMPT), and intensity-modulated photon therapy (IMXT). Methods: We performed a comparative study of treatment plans with 3D CPT, IMPT, and IMXT for ten patients with retroperitoneal sarcomas. RT was delivered to 50.4 Gy to the clinical target volume (CTV), the structures considered at risk for microscopic disease. Results: CTVs ranged from 74 to 357 cc (mean 188 cc). Dose conformity was improved with IMPT, while 3D CPT provided better dose homogeneity. Mean dose to the liver, small bowel, and stomach was reduced with IMPT compared with 3D CPT or IMXT. Conclusions: IMPT, 3D CPT, and IMXT provide excellent target coverage for retroperitoneal sarcomas. OAR dose is lower with IMPT and 3D CPT, and IMPT achieves the closest conformity. These techniques offer the opportunity for further dose escalation to areas with positive margins.

7.
Br J Ophthalmol ; 106(4): 518-521, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33355171

RESUMO

AIMS: To assess treatment outcomes after proton beam irradiation (PBI) without surgical localisation of uveal melanomas involving the iris, ciliary body and anterior choroid. METHODS: Retrospective chart review of 125 patients evaluated at Massachusetts Eye and Ear and treated with PBI using a light field set-up without localisation surgery between November 1975 and April 2017. The tumours were characterised as follows: iris (n=18, 14.4%), ciliary body (n=12, 9.6%), iridociliary (n=58, 46.4%), ciliochoroidal (n=24, 19.2%) and iridociliochoroidal (n=13, 10.4%). The tumours were measured by transillumination and ultrasonography before treatment. Tumours with posterior margin located less than two disc diameters from the ora serrata were treated using the light field technique. Patient outcomes after PBI were evaluated. RESULTS: Most patients had good vision at the time of tumour diagnosis (69.6% had baseline visual acuity (VA) of ≥20/40). Median VA at last follow-up (median follow-up: 72.1 months) was 20/63. Recurrences occurred in 12 patients (9.6%) at a median time of 4.0 years post-treatment. Recurrences were treated by repeat PBI (n=5) or enucleation (n=7). Secondary enucleation was performed in 18 patients (14.4%), and 61.1% of these were due to complications. Neovascular glaucoma (NVG) developed in 21 patients (16.8%). Of seven patients who developed NVG after anti-vascular endothelial growth factor (anti-VEGF) therapies became available, five were treated with intravitreal Avastin injections (23.8% of patients with NVG). Of 69 patients diagnosed with cataract after treatment, 51 (73.9%) were characterised as radiation-related. Death from metastatic uveal melanoma occurred in 20.8% of the cohort, with a median follow-up of 10.1 years. CONCLUSIONS: Patients treated with PBI using a light field set-up technique experience good outcomes after irradiation. Eye preservation and retention of good VA are seen in the majority of cases, and tumour recurrence is low.


Assuntos
Glaucoma Neovascular , Melanoma , Terapia com Prótons , Neoplasias Uveais , Corioide/patologia , Corpo Ciliar/patologia , Seguimentos , Humanos , Iris/patologia , Iris/cirurgia , Melanoma/diagnóstico , Melanoma/patologia , Melanoma/radioterapia , Recidiva Local de Neoplasia/patologia , Prótons , Estudos Retrospectivos , Neoplasias Uveais/diagnóstico , Neoplasias Uveais/patologia , Neoplasias Uveais/radioterapia
8.
Pract Radiat Oncol ; 12(2): 135-144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34619374

RESUMO

PURPOSE: Conventional rectal spacers (nonI-SPs) are low-contrast on computed tomography (CT), often necessitating magnetic resonance imaging for accurate delineation. A new formulation of spacers (I-SPs) incorporates iodine to improve radiopacity and CT visualization. We characterized placement, stability, and plan quality of I-SPs compared to nonI-SPs. METHODS AND MATERIALS: Patients with intact prostate cancer (n = 50) treated with I-SPs and photons were compared to randomly selected patients (n = 50) with nonI-SPs (photon or proton therapy). The I-SP was contoured on the planning CT and cone beam CTs at 3 timepoints: first, middle, and final treatment (n = 200 scans). I-SPs Hounsfield units (HU), volume, surface area (SA), centroid position relative to prostate centroid, and distance between prostate/rectum centroids were compared on the planning CTs between each cohort. I-SP changes were evaluated on cone beam CTs over courses of treatment. Dosimetric evaluations of plan quality and robustness were performed. I-SP was tested in a phantom to characterize its relative linear stopping power for protons. RESULTS: I-SPs yielded a distinct visible contrast on planning CTs compared to nonI-SPs (HU 138 vs 12, P < .001), allowing delineation on CT alone. The delineated volume and SA of I-SPs were smaller than nonI-SPs (volume 8.9 vs 10.6 mL, P < .001; SA 28 vs 35 cm2, P < .001), yet relative spacer position and prostate-rectal separation were similar (P = .79). No significant change in HU, volume, SA, or relative position of the I-SPs hydrogel occurred over courses of treatment (all P > .1). Dosimetric analysis concluded there were no significant changes in plan quality or robustness for I-SPs compared to nonI-SPs. The I-SP relative linear stopping power was 1.018, necessitating HU override for proton planning. CONCLUSIONS: I-SPs provide a manifest CT contrast, allowing for delineation on planning CT alone with no magnetic resonance imaging necessary. I-SPs radiopacity, size, and relative position remained stable over courses of treatment from 28 to 44 fractions. No changes in plan quality or robustness were seen comparing I-SPs and nonI-SPs.


Assuntos
Neoplasias da Próstata , Terapia com Prótons , Humanos , Masculino , Fótons/uso terapêutico , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reto/diagnóstico por imagem , Reto/patologia
9.
Acta Oncol ; 60(10): 1283-1290, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34282708

RESUMO

BACKGROUND: Dose escalation has been associated with improved biochemical control for prostate cancer. Focusing the high dose on the MRI-defined intraprostatic lesions (IL) could spare the surrounding organs at risk and hence allow further escalation. We compare treatment efficacy between state-of-the-art focally-boosted proton and photon-based radiotherapy, and investigate possible predictive guidelines regarding individualized treatment prescriptions. MATERIAL AND METHODS: Ten prostate cancer patients with well-defined ILs were selected. Multiparametric MRI was used to delineate ILs, which were transferred to the planning CT via image registration. Pencil beam scanning proton therapy and volumetric modulated arc therapy treatment plans, were created for each patient. Each modality featured 6 plans: (1) moderately hypofractionated dose: 70 Gy to the prostate in 28 fractions, (2)-(6) plan 1 plus additional simultaneous-integrated-boost to ILs to 75.6, 81.2, 86.6, 98 and 112 Gy in 28 fractions. Equivalent dose to 2 Gy-per-fraction (EqD2) was used to calculate tumor control (TCP) and normal tissue complication probabilities (NTCP) for ILs and organs-at-risk. RESULTS: For both modalities, the maximum necessary dose to achieve TCP > 99% was 98 Gy for very high-risk ILs. For lower risk ILs lower doses were sufficient. NTCP was <25% and 35% for protons and photons at the maximum dose escalation, respectively. For the cases and beam characteristics considered, proton therapy was dosimetrically superior when IL was >4 cc or located <2.5 mm from the rectum. CONCLUSION: This work demonstrated the potential role for proton therapy in the setting of prostate focal dose escalation. We propose that anatomical characteristic could be used as criteria to identify patients who would benefit from proton treatment.


Assuntos
Neoplasias da Próstata , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Imageamento por Ressonância Magnética , Masculino , Órgãos em Risco , Neoplasias da Próstata/radioterapia , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
10.
Med Phys ; 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30007067

RESUMO

PURPOSE: Hypofractionated radiotherapy of prostate cancer is gaining clinical acceptance given its potential increase in therapeutic ratio and evidence for noninferiority and lack of added late toxicities compared to conventional fractionation. However, concerns have been raised that smaller number of fractions might lead to larger dosimetric influence by interfractional motion. We aim to compare the effect of these variations on hypofractionated pencil beam scanning (PBS) proton therapy and volumetric modulated arc therapy (VMAT) for localized prostate cancer. METHODS: Weekly CT images were acquired for 6 patients participating in a randomized clinical trial. PBS plans featuring bilateral (BL) and a combination of lateral and anterior-oblique beams (AOL), and VMAT plans were created. All patients were treated to a conventional 79.2 Gy total dose in 44 fractions. For this study, hypofractionated dose to the prostate gland was 51.6 Gy in 12 fractions or 36.25 Gy in 5 fractions, and 32.8, and 23.1 Gy to proximal seminal vesicles, respectively. Patients were simulated with endorectal balloons to aid gland immobilization. Three fiducial markers were implanted for setup guidance. All plans were recomputed on the weekly CT images after aligning with the simulation CT. The entire set of 9 CT images was used for dose recalculation for 12-fraction and only 5 used for the 5-fraction case. Adaptive range adjustments were applied to anterior-oblique beams assuming clinical availability of in vivo range verification. Fractional doses were summed using deformable dose accumulation to approximate the delivered dose. Biologically equivalent dose to 2 Gy(EQD2) was calculated assuming α/ß of 1.5 Gy for prostate and 3 Gy for bladder and rectum. RESULTS: The median delivered prostate D98 was 0.13/0.14/0.13 Gy(EQD2) smaller than planned for PBS-BL, 0.13/0.27/0.17 Gy(EQD2) for PBS-AOL and 0.59/0.66/0.59 Gy(EQD2) for VMAT, for 44/12/5 fractions, respectively. The largest D98 reduction was 1.5 and 3.5 Gy(EQD2) for CTV1 and CTV2, respectively. Target dose degradation was comparable for all fractionation schemes within each modality. The maximum increase in rectum D2 was 0.98 Gy(EQD2) for a 5-fraction PBS case. CONCLUSIONS: The robustness of PBS and VMAT were comparable for all patients for the studied fractionations. The delivered target dose generally remained within clinical tolerance and the deviations were relatively minor for both fractionation schemes. The delivered OAR dose stayed in compliance with the RTOG hypofractionation constraints for all cases.

11.
Int J Radiat Oncol Biol Phys ; 97(5): 1087-1094, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28332994

RESUMO

PURPOSE: To predict the organ at risk (OAR) dose levels achievable with proton beam therapy (PBT), solely based on the geometric arrangement of the target volume in relation to the OARs. A comparison with an alternative therapy yields a prediction of the patient-specific benefits offered by PBT. This could enable physicians at hospitals without proton capabilities to make a better-informed referral decision or aid patient selection in model-based clinical trials. METHODS AND MATERIALS: Skull-base tumors were chosen to test the method, owing to their geometric complexity and multitude of nearby OARs. By exploiting the correlations between the dose and distance-to-target in existing PBT plans, the models were independently trained for 6 types of OARs: brainstem, cochlea, optic chiasm, optic nerve, parotid gland, and spinal cord. Once trained, the models could estimate the feasible dose-volume histogram and generalized equivalent uniform dose (gEUD) for OAR structures of new patients. The models were trained using 20 patients and validated using an additional 21 patients. Validation was achieved by comparing the predicted gEUD to that of the actual PBT plan. RESULTS: The predicted and planned gEUD were in good agreement. Considering all OARs, the prediction error was +1.4 ± 5.1 Gy (mean ± standard deviation), and Pearson's correlation coefficient was 93%. By comparing with an intensity modulated photon treatment plan, the model could classify whether an OAR structure would experience a gain, with a sensitivity of 93% (95% confidence interval: 87%-97%) and specificity of 63% (95% confidence interval: 38%-84%). CONCLUSIONS: We trained and validated models that could quickly and accurately predict the patient-specific benefits of PBT for skull-base tumors. Similar models could be developed for other tumor sites. Such models will be useful when an estimation of the feasible benefits of PBT is desired but the experience and/or resources required for treatment planning are unavailable.


Assuntos
Modelos Biológicos , Assistência Centrada no Paciente/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Base do Crânio/diagnóstico , Neoplasias da Base do Crânio/radioterapia , Simulação por Computador , Relação Dose-Resposta à Radiação , Humanos , Bases de Conhecimento , Aprendizado de Máquina , Prognóstico , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Phys Med Biol ; 62(8): R49-R80, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28323641

RESUMO

A significant and increasing number of patients receiving radiation therapy present with metal objects close to, or even within, the treatment area, resulting in artifacts in computed tomography (CT) imaging, which is the most commonly used imaging method for treatment planning in radiation therapy. In the presence of metal implants, such as dental fillings in treatment of head-and-neck tumors, spinal stabilization implants in spinal or paraspinal treatment or hip replacements in prostate cancer treatments, the extreme photon absorption by the metal object leads to prominent image artifacts. Although current CT scanners include a series of correction steps for beam hardening, scattered radiation and noisy measurements, when metal implants exist within or close to the treatment area, these corrections do not suffice. CT metal artifacts affect negatively the treatment planning of radiation therapy either by causing difficulties to delineate the target volume or by reducing the dose calculation accuracy. Various metal artifact reduction (MAR) methods have been explored in terms of improvement of organ delineation and dose calculation in radiation therapy treatment planning, depending on the type of radiation treatment and location of the metal implant and treatment site. Including a brief description of the available CT MAR methods that have been applied in radiation therapy, this article attempts to provide a comprehensive review on the dosimetric effect of the presence of CT metal artifacts in treatment planning, as reported in the literature, and the potential improvement suggested by different MAR approaches. The impact of artifacts on the treatment planning and delivery accuracy is discussed in the context of different modalities, such as photon external beam, brachytherapy and particle therapy, as well as by type and location of metal implants.


Assuntos
Algoritmos , Artefatos , Metais , Imagens de Fantasmas , Próteses e Implantes , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Artroplastia de Quadril , Implantes Dentários , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Pelve/diagnóstico por imagem , Fótons , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica
13.
Int J Radiat Oncol Biol Phys ; 95(1): 336-343, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084651

RESUMO

PURPOSE: To assess the planning, treatment, and follow-up strategies worldwide in dedicated proton therapy ocular programs. METHODS AND MATERIALS: Ten centers from 7 countries completed a questionnaire survey with 109 queries on the eye treatment planning system (TPS), hardware/software equipment, image acquisition/registration, patient positioning, eye surveillance, beam delivery, quality assurance (QA), clinical management, and workflow. RESULTS: Worldwide, 28,891 eye patients were treated with protons at the 10 centers as of the end of 2014. Most centers treated a vast number of ocular patients (1729 to 6369). Three centers treated fewer than 200 ocular patients. Most commonly, the centers treated uveal melanoma (UM) and other primary ocular malignancies, benign ocular tumors, conjunctival lesions, choroidal metastases, and retinoblastomas. The UM dose fractionation was generally within a standard range, whereas dosing for other ocular conditions was not standardized. The majority (80%) of centers used in common a specific ocular TPS. Variability existed in imaging registration, with magnetic resonance imaging (MRI) rarely being used in routine planning (20%). Increased patient to full-time equivalent ratios were observed by higher accruing centers (P=.0161). Generally, ophthalmologists followed up the post-radiation therapy patients, though in 40% of centers radiation oncologists also followed up the patients. Seven centers had a prospective outcomes database. All centers used a cyclotron to accelerate protons with dedicated horizontal beam lines only. QA checks (range, modulation) varied substantially across centers. CONCLUSIONS: The first worldwide multi-institutional ophthalmic proton therapy survey of the clinical and technical approach shows areas of substantial overlap and areas of progress needed to achieve sustainable and systematic management. Future international efforts include research and development for imaging and planning software upgrades, increased use of MRI, development of clinical protocols, systematic patient-centered data acquisition, and publishing guidelines on QA, staffing, treatment, and follow-up parameters by dedicated ocular programs to ensure the highest level of care for ocular patients.


Assuntos
Institutos de Câncer/normas , Neoplasias Oculares/radioterapia , Melanoma/radioterapia , Terapia com Prótons , Inquéritos e Questionários , Neoplasias Uveais/radioterapia , Canadá , Institutos de Câncer/estatística & dados numéricos , Ciclotrons , Florida , França , Alemanha , Humanos , Manutenção , Massachusetts , Admissão e Escalonamento de Pessoal , Polônia , Terapia com Prótons/instrumentação , Terapia com Prótons/normas , Terapia com Prótons/estatística & dados numéricos , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Radioterapia Assistida por Computador/métodos , São Francisco , Suíça , Reino Unido
14.
Int J Radiat Oncol Biol Phys ; 95(1): 444-453, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26907917

RESUMO

PURPOSE: To quantify and compare the impact of interfractional setup and anatomic variations on proton therapy (PT) and intensity modulated radiation therapy (IMRT) for prostate cancer. METHODS AND MATERIALS: Twenty patients with low-risk or intermediate-risk prostate cancer randomized to receive passive-scattering PT (n=10) and IMRT (n=10) were selected. For both modalities, clinical treatment plans included 50.4 Gy(RBE) to prostate and proximal seminal vesicles, and prostate-only boost to 79.2 Gy(RBE) in 1.8 Gy(RBE) per fraction. Implanted fiducials were used for prostate localization and endorectal balloons were used for immobilization. Patients in PT and IMRT arms received weekly computed tomography (CT) and cone beam CT (CBCT) scans, respectively. The planned dose was recalculated on each weekly image, scaled, and mapped onto the planning CT using deformable registration. The resulting accumulated dose distribution over the entire treatment course was compared with the planned dose using dose-volume histogram (DVH) and γ analysis. RESULTS: The target conformity index remained acceptable after accumulation. The largest decrease in the average prostate D98 was 2.2 and 0.7 Gy for PT and IMRT, respectively. On average, the mean dose to bladder increased by 3.26 ± 7.51 Gy and 1.97 ± 6.84 Gy for PT and IMRT, respectively. These values were 0.74 ± 2.37 and 0.56 ± 1.90 for rectum. Differences between changes in DVH indices were not statistically significant between modalities. All volume indices remained within the protocol tolerances after accumulation. The average pass rate for the γ analysis, assuming tolerances of 3 mm and 3%, for clinical target volume, bladder, rectum, and whole patient for PT/IMRT were 100/100, 92.6/99, 99.2/100, and 97.2/99.4, respectively. CONCLUSION: The differences in target coverage and organs at risk dose deviations for PT and IMRT were not statistically significant under the guidelines of this protocol.


Assuntos
Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Terapia com Prótons/métodos , Radioterapia de Intensidade Modulada/métodos , Fracionamento da Dose de Radiação , Marcadores Fiduciais , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Tamanho do Órgão/efeitos da radiação , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Radiografia , Reto/efeitos da radiação , Eficiência Biológica Relativa , Glândulas Seminais/efeitos da radiação , Estatísticas não Paramétricas , Bexiga Urinária/efeitos da radiação
15.
Ophthalmology ; 123(2): 369-377, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26545316

RESUMO

PURPOSE: To report visual outcomes in patients undergoing proton beam irradiation of tumors located within 1 disc diameter of the fovea. DESIGN: Retrospective review. PARTICIPANTS: Patients with choroidal melanoma involving the fovea treated with proton beam therapy between 1975 and 2009. METHODS: Three hundred fifty-one patients with choroidal melanomas located 1 disc diameter (DD) or less from the fovea and more than 1 DD away from the optic nerve were included in this study. In a subgroup of 203 of the patients with small and medium choroidal melanomas, the effect of a reduced dose of radiation, 50 Gy (relative biological effectiveness [RBE]) versus 70 Gy (RBE), on visual outcomes was analyzed. The Kaplan-Meier method and Cox regression analysis were performed to calculate cumulative rates of vision loss and to assess risk factors for vision loss, respectively. MAIN OUTCOME MEASURES: Visual acuity and radiation complications, which included radiation maculopathy, papillopathy, retinal detachment, and rubeosis, were assessed. RESULTS: Three hundred fifty-one patients were included in this study with a mean follow-up time of 68.7 months. More than one-third of patients (35.5%) retained 20/200 or better vision 5 years after proton beam irradiation. For those patients with a baseline visual acuity of 20/40 or better, 16.2% of patients retained this level of vision 5 years after proton beam irradiation. Tumor height less than 5 mm and baseline visual acuity 20/40 or better were associated significantly with a better visual outcome (P < 0.001). More than two-thirds (70.4%) of patients receiving 50 Gy (RBE) and nearly half (45.1%) of patients receiving 70 Gy (RBE) retained 20/200 or better vision 5 years after treatment, but this difference was not significant. Approximately 20% of patients with these smaller macular tumors retained 20/40 vision or better 5 years after irradiation. CONCLUSIONS: The results of this retrospective analysis demonstrate that despite receiving a full dose of radiation to the fovea, many patients with choroidal melanoma with foveal involvement maintain useful vision. A radiation dose reduction from 70 to 50 Gy (RBE) did not seem to increase the proportion of patients who retain usable vision.


Assuntos
Neoplasias da Coroide/radioterapia , Fóvea Central/efeitos da radiação , Melanoma/radioterapia , Terapia com Prótons , Acuidade Visual/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Coroide/fisiopatologia , Feminino , Seguimentos , Fóvea Central/patologia , Humanos , Masculino , Melanoma/fisiopatologia , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Estudos Retrospectivos
16.
Int J Radiat Oncol Biol Phys ; 95(1): 224-233, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26611874

RESUMO

PURPOSE: To retrospectively analyze the beam approaches used in gantry-based proton treatments, and to reassess the practical advantages of the gantry, compared with beam approaches that are achievable without a gantry, in the context of present-day technology. METHODS AND MATERIALS: We reviewed the proton therapy plans of 4332 patients treated on gantries at our hospital, delivered by the double scattering technique (n=4228) and, more recently, pencil beam scanning (PBS) (n=104). Beam approaches, relative to the patient frame, were analyzed individually to identify cases that could be treated without a gantry. Three treatment configurations were considered, with the patient in lying position, sitting position, or both. The FIXED geometry includes a fixed horizontal portal. The BEND geometry enables a limited vertical inflection of the beam by up to 20°. The MOVE geometry allows for flexibility of the patient head and body setup. RESULTS: The percentage of patients with head and neck tumors that could be treated without a gantry using double scattering was 44% in FIXED, 70% in 20° BEND, and 100% in 90° MOVE. For torso regions, 99% of patients could be treated in 20° BEND. Of 104 PBS treatments, all but 1 could be reproduced with FIXED geometry. The only exception would require a 10° BEND capability. Note here that the PBS treatments were applied to select anatomic sites, including only 2 patients with skull-base tumors. CONCLUSIONS: The majority of practical beam approaches can be realized with gantry-less delivery, aided by limited beam bending and patient movements. Practical limitations of the MOVE geometry, and treatments requiring a combination of lying and sitting positions, may lower the percentage of head and neck patients who could be treated without a gantry. Further investigation into planning, immobilization, and imaging is needed to remove the practical limitations and to facilitate proton treatment without a gantry.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Terapia com Prótons/instrumentação , Terapia com Prótons/métodos , Institutos de Câncer , Estudos de Viabilidade , Hospitais Gerais , Humanos , Massachusetts , Movimento , Neoplasias/radioterapia , Posicionamento do Paciente/métodos , Terapia com Prótons/estatística & dados numéricos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos , Espalhamento de Radiação , Fatores de Tempo
17.
Int J Radiat Oncol Biol Phys ; 90(5): 1030-6, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25539367

RESUMO

PURPOSE: To investigate [18F]-fluoromisonidazole positron emission tomography/computed tomography (FMISO-PET/CT) detection of targetable hypoxic subvolumes (HSVs) in chordoma of the mobile or sacrococcygeal spine. METHODS AND MATERIALS: A prospective, pilot study of 20 patients with primary or locally recurrent chordoma of the mobile or sacrococcygeal spine treated with proton or combined proton/photon radiation therapy (RT) with or without surgery was completed. The FMISO-PET/CT was performed before RT and after 19.8-34.2 GyRBE (relative biologic effectiveness). Gross tumor volumes were delineated and HSVs defined including voxels with standardized uptake values ≥1.4 times the muscle mean. Clinical characteristics and treatments received were compared between patients with and without HSVs. RESULTS: The FMISO-PET/CT detected HSVs in 12 of 20 patients (60%). Baseline and interval HSV spatial concordance varied (0%-94%). Eight HSVs were sufficiently large (≥5 cm(3)) to potentially allow an intensity modulated proton therapy boost. Patients with HSVs had significantly larger gross tumor volumes (median 410.0 cm(3) vs 63.4 cm(3); P=.02) and were significantly more likely to have stage T2 tumors (5 of 12 vs 0 of 8; P=.04). After a median follow-up of 1.8 years (range, 0.2-4.4 years), a local recurrence has yet to be observed. Three patients developed metastatic disease, 2 with HSVs. CONCLUSIONS: Detection of targetable HSVs by FMISO-PET/CT within patients undergoing RT with or without surgery for treatment of chordoma of the mobile and sacrococcygeal spine is feasible. The study's inability to attribute interval HSV changes to treatment, rapidly changing hypoxic physiology, or imaging inconsistencies is a limitation. Further study of double-baseline FMISO-PET/CT and hypoxia-directed RT dose escalation, particularly in patients at high risk for local recurrence, is warranted.


Assuntos
Hipóxia Celular , Cordoma/metabolismo , Misonidazol/análogos & derivados , Imagem Multimodal/métodos , Recidiva Local de Neoplasia/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Neoplasias da Coluna Vertebral/metabolismo , Adulto , Idoso , Cordoma/diagnóstico por imagem , Cordoma/radioterapia , Cordoma/cirurgia , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Fótons/uso terapêutico , Projetos Piloto , Estudos Prospectivos , Terapia com Prótons , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Região Sacrococcígea/diagnóstico por imagem , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/cirurgia , Tomografia Computadorizada por Raios X/métodos , Carga Tumoral
18.
Med Phys ; 40(7): 071714, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23822418

RESUMO

PURPOSE: The α-to-ß (α/ß) ratio for prostate tumor is likely lower than that for the surrounding normal organs, such as rectum and bladder (≈ 3 Gy). As a result, hypofractionation is expected to improve the therapeutic ratio in prostate radiation therapy. However, with the use of fewer, larger fractions, the accuracy of treatment dose delivery becomes more influenced by the physical uncertainties resulting from motion and radiobiological uncertainties in the α/ß ratio of the prostate tumor. The purpose of this study is to evaluate the impact of interfractional motion on treatment dose delivery within the likely range of the tumor α/ß ratio. METHODS: Serial CT images acquired at simulation and daily treatment for three prostate patients were studied retrospectively. A conventional 3D-conformal proton plan was created for each patient, delivering 25 fractions of 2 Gy to ITV1 (internal target volume, expanded from the prostate and clinically involved seminal vesicles) followed by 14 fractions to ITV2 (expanded from the prostate). The plans were renormalized for a series of hypofractionated protocols of between five and 28 fractions. The fractional doses were computed on daily CT and were mapped onto simulation CT using deformable registration. In each course, the doses from the fractions with the lowest D97% of the ITV2 were summed to approximate the lower limit (worst case) of target coverage. The uncertainty in dose and coverage was estimated as the deviation of the worst case from the nominal plan. RESULTS: For treatments in 28 to five fractions, the uncertainty arising from interfractional motion ranged from ≈ 1% to 4% for V100% and ≈ 2% to 6% for D100% of the ITV2. The uncertainties in V95% and D95% were both minimal (<1%) for all protocols. For tumors with a low α/ß of 1.0 Gy, the treatment in five fractions could deliver an additional 21.0 and 17.4 GyEQD2 to 95% and 100% of the ITV2, respectively, compared to that in 28 fractions. This advantage disappeared for tumors with α/ß > 2.5 Gy, assuming the worst case for interfractional motion. CONCLUSIONS: In hypofractionated proton therapy for prostate cancer, the dosimetric uncertainties due to interfractional motion were minimal for the ITV2 coverage at 95% isodose level and the dose received by 95% of the ITV2. Although hypofractionation could yield an increase in equivalent dose to the target for tumors with low α/ß, the gain was cancelled out by the uncertainty due to interfractional motion for tumors with α/ß > 2.5 Gy.


Assuntos
Fracionamento da Dose de Radiação , Movimento , Neoplasias da Próstata/fisiopatologia , Neoplasias da Próstata/radioterapia , Terapia com Prótons/métodos , Incerteza , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X
19.
Int J Radiat Oncol Biol Phys ; 87(1): 216-22, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23790771

RESUMO

PURPOSE: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). METHODS AND MATERIALS: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose-volume and LET-volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. RESULTS: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. CONCLUSIONS: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in identifying the clinically optimal solution.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Transferência Linear de Energia , Órgãos em Risco/efeitos da radiação , Neoplasias Pancreáticas/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Cordoma/diagnóstico por imagem , Cordoma/patologia , Cordoma/radioterapia , Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Método de Monte Carlo , Órgãos em Risco/diagnóstico por imagem , Neoplasias Pancreáticas/diagnóstico por imagem , Radiografia , Dosagem Radioterapêutica , Eficiência Biológica Relativa
20.
Med Phys ; 40(5): 051708, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23635256

RESUMO

PURPOSE: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. METHODS: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability (TCP) and normal tissue complication probability (NTCP). To assess potential local RBE variations, LET distributions were calculated with Monte Carlo, and compared for different plans. The results were assessed in terms of their sensitivity to uncertainties in model parameters and delivery. RESULTS: IFD courses included equal number of fractions boosting either hemisphere, thus, the combined physical dose was close to uniform throughout the prostate. However, for the entire course, the prostate EUD in IFD was higher than in conventional FTP by up to 14%, corresponding to the estimated increase in TCP to 96% from 88%. The extent of gain depended on the mixing factor, i.e., relative weights used to combine FTP and STP spot weights. Increased weighting of STP typically yielded a higher target EUD, but also led to increased sensitivity of dose to variations in the proton's range. Rectal and bladder EUD were same or lower (per normalization), and the NTCP for both remained below 1%. The LET distributions in IFD also depended strongly on the mixing weights: plans using higher weight of STP spots yielded higher LET, indicating a potentially higher local RBE. CONCLUSIONS: In proton therapy delivered by pencil beam scanning, improved therapeutic outcome can potentially be expected with delivery of IFD distributions, while administering the prescribed quasi-uniform dose to the target over the entire course. The biological effectiveness of IFD may be further enhanced by optimizing the LET distributions. IFD distributions are characterized by a dose gradient located in proximity of the prostate's midplane, thus, the fidelity of delivery would depend crucially on the precision with which the proton range could be controlled.


Assuntos
Terapia com Prótons/métodos , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Fracionamento da Dose de Radiação , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Carga Tumoral/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...