Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurooncol Adv ; 6(1): vdad154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38239626

RESUMO

Background: Glioblastoma (GBM) displays alterations in iron that drive proliferation and tumor growth. Iron regulation is complex and involves many regulatory mechanisms, including the homeostatic iron regulator (HFE) gene, which encodes the homeostatic iron regulatory protein. While HFE is upregulated in GBM and correlates with poor survival outcomes, the function of HFE in GBM remains unclear. Methods: We interrogated the impact of cell-intrinsic Hfe expression on proliferation and survival of intracranially implanted animals through genetic gain- and loss-of-function approaches in syngeneic mouse glioma models, along with in vivo immune assessments. We also determined the expression of iron-associated genes and their relationship to survival in GBM using public data sets and used transcriptional profiling to identify differentially expressed pathways in control compared to Hfe-knockdown cells. Results: Overexpression of Hfe accelerated GBM proliferation and reduced animal survival, whereas suppression of Hfe induced apoptotic cell death and extended survival, which was more pronounced in females and associated with attenuation of natural killer cells and CD8+ T cell activity. Analysis of iron gene signatures in Hfe-knockdown cells revealed alterations in the expression of several iron-associated genes, suggesting global disruption of intracellular iron homeostasis. Further analysis of differentially expressed pathways revealed oxidative stress as the top pathway upregulated following Hfe loss. Hfe knockdown indeed resulted in enhanced 55Fe uptake and generation of reactive oxygen species. Conclusions: These findings reveal an essential function for HFE in GBM cell growth and survival, as well as a sex-specific interaction with the immune response.

2.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37252795

RESUMO

Intratumoral heterogeneity is a defining hallmark of glioblastoma, driving drug resistance and ultimately recurrence. Many somatic drivers of microenvironmental change have been shown to affect this heterogeneity and, ultimately, the treatment response. However, little is known about how germline mutations affect the tumoral microenvironment. Here, we find that the single-nucleotide polymorphism (SNP) rs755622 in the promoter of the cytokine macrophage migration inhibitory factor (MIF) is associated with increased leukocyte infiltration in glioblastoma. Furthermore, we identified an association between rs755622 and lactotransferrin expression, which could also be used as a biomarker for immune-infiltrated tumors. These findings demonstrate that a germline SNP in the promoter region of MIF may affect the immune microenvironment and further reveal a link between lactotransferrin and immune activation.


Assuntos
Glioblastoma , Fatores Inibidores da Migração de Macrófagos , Humanos , Lactoferrina/genética , Fatores Inibidores da Migração de Macrófagos/genética , Polimorfismo de Nucleotídeo Único , Glioblastoma/genética , Regiões Promotoras Genéticas , Microambiente Tumoral/genética , Oxirredutases Intramoleculares/genética
3.
Nat Cancer ; 4(5): 648-664, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37169842

RESUMO

The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in glioblastoma (GBM), the most frequent and malignant primary brain tumor. We identified horizontal mitochondria transfer from astrocytes as a mechanism that enhances tumorigenesis in GBM. This transfer is dependent on network-forming intercellular connections between GBM cells and astrocytes, which are facilitated by growth-associated protein 43 (GAP43), a protein involved in neuron axon regeneration and astrocyte reactivity. The acquisition of astrocyte mitochondria drives an increase in mitochondrial respiration and upregulation of metabolic pathways linked to proliferation and tumorigenicity. Functionally, uptake of astrocyte mitochondria promotes cell cycle progression to proliferative G2/M phases and enhances self-renewal and tumorigenicity of GBM. Collectively, our findings reveal a host-tumor interaction that drives proliferation and self-renewal of cancer cells, providing opportunities for therapeutic development.


Assuntos
Glioblastoma , Humanos , Astrócitos/metabolismo , Astrócitos/patologia , Proteína GAP-43/metabolismo , Proteína GAP-43/uso terapêutico , Axônios/metabolismo , Axônios/patologia , Linhagem Celular Tumoral , Regeneração Nervosa , Mitocôndrias/metabolismo , Mitocôndrias/patologia
4.
Endocrinology ; 163(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35023543

RESUMO

Biological sex impacts a wide array of molecular and cellular functions that impact organismal development and can influence disease trajectory in a variety of pathophysiological states. In nonreproductive cancers, epidemiological sex differences have been observed in a series of tumors, and recent work has identified previously unappreciated sex differences in molecular genetics and immune response. However, the extent of these sex differences in terms of drivers of tumor growth and therapeutic response is less clear. In glioblastoma (GBM), the most common primary malignant brain tumor, there is a male bias in incidence and outcome, and key genetic and epigenetic differences, as well as differences in immune response driven by immune-suppressive myeloid populations, have recently been revealed. GBM is a prototypic tumor in which cellular heterogeneity is driven by populations of therapeutically resistant cancer stem cells (CSCs) that underlie tumor growth and recurrence. There is emerging evidence that GBM CSCs may show a sex difference, with male tumor cells showing enhanced self-renewal, but how sex differences impact CSC function is not clear. In this mini-review, we focus on how sex hormones may impact CSCs in GBM and implications for other cancers with a pronounced CSC population. We also explore opportunities to leverage new models to better understand the contribution of sex hormones vs sex chromosomes to CSC function. With the rising interest in sex differences in cancer, there is an immediate need to understand the extent to which sex differences impact tumor growth, including effects on CSC function.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Hormônios Esteroides Gonadais/fisiologia , Células-Tronco Neoplásicas/fisiologia , Androgênios , Animais , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/terapia , Estrogênios , Feminino , Glioblastoma/epidemiologia , Glioblastoma/terapia , Humanos , Masculino , Progesterona , Caracteres Sexuais
5.
Neuromolecular Med ; 24(1): 50-55, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33864598

RESUMO

Glioblastoma (GBM), the most common primary malignant brain tumor, remains difficult to treat and shares phenotypes, including an aberrant immune response, with other neurological disorders. Understanding the cellular and molecular mechanisms underlying this pathological immune response remains a priority, particularly as standard of care for advanced cancers evolves to include immunotherapies, which have yet to show strong clinical efficacy in GBM. Epidemiological evidence supports a sex difference in GBM, with increased prevalence in males, and recent studies identified differences between males and females ranging from genetic aberrations to cellular programs. Sex differences have also been identified in immune response, and in this mini-review, we present these differences to highlight potential sex-specific cellular and molecular mechanisms that underly GBM growth and response to immunotherapies. These sex differences offer an opportunity to understand GBM pathogenesis and extend beyond GBM to other tumors and neurological disorders to inform the development of next-generation therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Feminino , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Imunoterapia , Masculino , Caracteres Sexuais , Resultado do Tratamento
6.
G3 (Bethesda) ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34849760

RESUMO

Migrating cell collectives are key to embryonic development but also contribute to invasion and metastasis of a variety of cancers. Cell collectives can invade deep into tissues, leading to tumor progression and resistance to therapies. Collective cell invasion is also observed in the lethal brain tumor glioblastoma (GBM), which infiltrates the surrounding brain parenchyma leading to tumor growth and poor patient outcomes. Drosophila border cells, which migrate as a small cell cluster in the developing ovary, are a well-studied and genetically accessible model used to identify general mechanisms that control collective cell migration within native tissue environments. Most cell collectives remain cohesive through a variety of cell-cell adhesion proteins during their migration through tissues and organs. In this study, we first identified cell adhesion, cell matrix, cell junction, and associated regulatory genes that are expressed in human brain tumors. We performed RNAi knockdown of the Drosophila orthologs in border cells to evaluate if migration and/or cohesion of the cluster was impaired. From this screen, we identified eight adhesion-related genes that disrupted border cell collective migration upon RNAi knockdown. Bioinformatics analyses further demonstrated that subsets of the orthologous genes were elevated in the margin and invasive edge of human GBM patient tumors. These data together show that conserved cell adhesion and adhesion regulatory proteins with potential roles in tumor invasion also modulate collective cell migration. This dual screening approach for adhesion genes linked to GBM and border cell migration thus may reveal conserved mechanisms that drive collective tumor cell invasion.


Assuntos
Proteínas de Drosophila , Glioblastoma , Animais , Adesão Celular/genética , Movimento Celular/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Glioblastoma/metabolismo , Humanos , Interferência de RNA
7.
Cancers (Basel) ; 13(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34572751

RESUMO

Glioblastoma (GBM) is the most common primary brain tumor in adults, with few available therapies and a five-year survival rate of 7.2%. Hence, strategies for improving GBM prognosis are urgently needed. The translocator protein 18kDa (TSPO) plays crucial roles in essential mitochondria-based physiological processes and is a validated biomarker of neuroinflammation, which is implicated in GBM progression. The TSPO gene has a germline single nucleotide polymorphism, rs6971, which is the most common SNP in the Caucasian population. High TSPO gene expression is associated with reduced survival in GBM patients; however, the relation between the most frequent TSPO genetic variant and GBM pathogenesis is not known. The present study retrospectively analyzed the correlation of the TSPO polymorphic variant rs6971 with overall and progression-free survival in GBM patients using three independent cohorts. TSPO rs6971 polymorphism was significantly associated with shorter overall survival and progression-free survival in male GBM patients but not in females in one large cohort of 441 patients. We observed similar trends in two other independent cohorts. These observations suggest that the TSPO rs6971 polymorphism could be a significant predictor of poor prognosis in GBM, with a potential for use as a prognosis biomarker in GBM patients. These results reveal for the first time a biological sex-specific relation between rs6971 TSPO polymorphism and GBM.

8.
J Clin Invest ; 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34255747

RESUMO

Glioblastoma (GBM) remains among the deadliest of human malignancies, and the emergence of the cancer stem cell (CSC) phenotype represents a major challenge to durable treatment response. Because the environmental and lifestyle factors that impact CSC populations are not clear, we sought to understand the consequences of diet on CSC enrichment. We evaluated disease progression in mice fed an obesity-inducing high-fat diet (HFD) versus a low-fat, control diet. HFD resulted in hyper-aggressive disease accompanied by CSC enrichment and shortened survival. HFD drove intracerebral accumulation of saturated fats, which inhibited the production of the cysteine metabolite and gasotransmitter, hydrogen sulfide (H2S). H2S functions principally through protein S-sulfhydration and regulates multiple programs including bioenergetics and metabolism. Inhibition of H2S increased proliferation and chemotherapy resistance, whereas treatment with H2S donors led to death of cultured GBM cells and stasis of GBM tumors in vivo. Syngeneic GBM models and GBM patient specimens present an overall reduction in protein S-sulfhydration, primarily associated with proteins regulating cellular metabolism. These findings provide clear evidence that diet modifiable H2S signaling serves to suppress GBM by restricting metabolic fitness, while its loss triggers CSC enrichment and disease acceleration. Interventions augmenting H2S bioavailability concurrent with GBM standard of care may improve outcomes for GBM patients.

9.
Neuro Oncol ; 23(2): 199-213, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33173943

RESUMO

Cellular heterogeneity is a hallmark of advanced cancers and has been ascribed in part to a population of self-renewing, therapeutically resistant cancer stem cells (CSCs). Glioblastoma (GBM), the most common primary malignant brain tumor, has served as a platform for the study of CSCs. In addition to illustrating the complexities of CSC biology, these investigations have led to a deeper understanding of GBM pathogenesis, revealed novel therapeutic targets, and driven innovation towards the development of next-generation therapies. While there continues to be an expansion in our knowledge of how CSCs contribute to GBM progression, opportunities have emerged to revisit this conceptual framework. In this review, we will summarize the current state of CSCs in GBM using key concepts of evolution as a paradigm (variation, inheritance, selection, and time) to describe how the CSC state is subject to alterations of cell intrinsic and extrinsic interactions that shape their evolutionarily trajectory. We identify emerging areas for future consideration, including appreciating CSCs as a cell state that is subject to plasticity, as opposed to a discrete population. These future considerations will not only have an impact on our understanding of this ever-expanding field but will also provide an opportunity to inform future therapies to effectively treat this complex and devastating disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/genética , Humanos , Células-Tronco Neoplásicas
11.
Growth Horm IGF Res ; 39: 45-53, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29279183

RESUMO

OBJECTIVE: White adipose tissue (WAT) fibrosis - the buildup of extracellular matrix (ECM) proteins, primarily collagen - is now a recognized hallmark of tissue dysfunction and is increased with obesity and lipodystrophy. While growth hormone (GH) is known to increase collagen in several tissues, no previous research has addressed its effect on ECM in WAT. Thus, the purpose of this study is to determine if GH influences WAT fibrosis. DESIGN: This study examined WAT from four distinct strains of GH-altered mice (bGH and GHA transgenic mice as well as two tissue specific GH receptor gene disrupted lines, fat growth hormone receptor knockout or FaGHRKO and liver growth hormone receptor knockout or LiGHRKO mice). Collagen content and adipocyte size were studied in all cohorts and compared to littermate controls. In addition, mRNA expression of fibrosis-associated genes was assessed in one cohort (6month old male bovine GH transgenic and WT mice) and cultured 3T3-L1 adipocytes treated with GH. RESULTS: Collagen stained area was increased in WAT from bGH mice, was depot-dependent, and increased with age. Furthermore, increased collagen content was associated with decreased adipocyte size in all depots but more dramatic changes in the subcutaneous fat pad. Notably, the increase in collagen was not associated with an increase in collagen gene expression or other genes known to promote fibrosis in WAT, but collagen gene expression was increased with acute GH administration in 3T3-LI cells. In contrast, evaluation of 6month old GH antagonist (GHA) male mice showed significantly decreased collagen in the subcutaneous depot. Lastly, to assess if GH induced collagen deposition directly or indirectly (via IGF-1), fat (Fa) and liver (Li) specific GHRKO mice were evaluated. Decreased fibrosis in FaGHRKO and increased fibrosis in LiGHRKO mice suggest GH is primarily responsible for the alterations in collagen. CONCLUSIONS: Our results show that GH action is positively associated with an increase in WAT collagen content as well as a decrease in adipocyte size, particularly in the subcutaneous depot. This effect appears to be due to GH and not IGF-1 and reveals a novel means by which GH regulates WAT accumulation.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Branco/fisiologia , Fibrose/patologia , Hormônio do Crescimento/administração & dosagem , Gordura Subcutânea/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Bovinos , Células Cultivadas , Feminino , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gordura Subcutânea/citologia , Gordura Subcutânea/efeitos dos fármacos
12.
Compr Physiol ; 7(3): 819-840, 2017 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-28640444

RESUMO

Increasing prevalence of obesity and obesity-related conditions worldwide has necessitated a more thorough understanding of adipose tissue (AT) and expanded the scope of research in this field. AT is now understood to be far more complex and dynamic than previously thought, which has also fueled research to reevaluate how hormones, such as growth hormone (GH), alter the tissue. In this review, we will introduce properties of AT important for understanding how GH alters the tissue, such as anatomical location of depots and adipokine output. We will provide an overview of GH structure and function and define several human conditions and cognate mouse lines with extremes in GH action that have helped shape our understanding of GH and AT. A detailed discussion of the GH/AT relationship will be included that addresses adipokine production, immune cell populations, lipid metabolism, senescence, differentiation, and fibrosis, as well as brown AT and beiging of white AT. A brief overview of how GH levels are altered in an obese state, and the efficacy of GH as a therapeutic option to manage obesity will be given. As we will reveal, the effects of GH on AT are numerous, dynamic and depot-dependent. © 2017 American Physiological Society. Compr Physiol 7:819-840, 2017.


Assuntos
Tecido Adiposo/metabolismo , Hormônio do Crescimento/metabolismo , Tecido Adiposo/patologia , Animais , Hormônio do Crescimento/genética , Humanos , Obesidade/metabolismo , Obesidade/patologia , Doenças da Hipófise/metabolismo , Doenças da Hipófise/patologia , Transdução de Sinais
13.
Endocrinology ; 156(2): 555-64, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25406017

RESUMO

Reduced GH levels have been associated with improved glucose metabolism and increased longevity despite obesity in multiple mouse lines. However, one mouse line, the GH receptor antagonist (GHA) transgenic mouse, defies this trend because it has reduced GH action and increased adiposity, but glucose metabolism and life span are similar to controls. Slight differences in glucose metabolism and adiposity profiles can become exaggerated on a high-fat (HF) diet. Thus, in this study, male and female GHA and wild-type (WT) mice in a C57BL/6 background were placed on HF and low-fat (LF) diets for 11 weeks, starting at 10 weeks of age, to assess how GHA mice respond to additional metabolic stress of HF feeding. On a HF diet, all mice showed significant weight gain, although GHA gained weight more dramatically than WT mice, with males gaining more than females. Most of this weight gain was due to an increase in fat mass with WT mice increasing primarily in the white adipose tissue perigonadal depots, whereas GHA mice gained in both the sc and perigonadal white adipose tissue regions. Notably, GHA mice were somewhat protected from detrimental glucose metabolism changes on a HF diet because they had only modest increases in serum glucose levels, remained glucose tolerant, and did not develop hyperinsulinemia. Sex differences were observed in many measures with males reacting more dramatically to both a reduction in GH action and HF diet. In conclusion, our findings show that GHA mice, which are already obese, are susceptible to further adipose tissue expansion with HF feeding while remaining resilient to alterations in glucose homeostasis.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Receptores da Somatotropina/antagonistas & inibidores , Adipócitos/patologia , Adiposidade , Animais , Peso Corporal , Bovinos , Modelos Animais de Doenças , Ingestão de Alimentos , Feminino , Glucose/metabolismo , Intolerância à Glucose , Hiperinsulinismo , Insulina/sangue , Leptina/sangue , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/sangue , Obesidade/patologia , Receptores da Somatotropina/metabolismo , Triglicerídeos/metabolismo , Aumento de Peso
14.
J Gerontol A Biol Sci Med Sci ; 69(1): 34-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23873966

RESUMO

Growth hormone receptor-null (GHR(-/-)) mice are dwarf, insulin sensitive, and long-lived in spite of increased adiposity. However, their adiposity is not uniform, with select white adipose tissue (WAT) depots enlarged. To study WAT depot-specific effects on insulin sensitivity and life span, we analyzed individual WAT depots of 12- and 24-month-old GHR(-) (/-) and wild-type (WT) mice, as well as their plasma levels of selected hormones. Adipocyte sizes and plasma insulin, leptin, and adiponectin levels decreased with age in both GHR(-) (/-) and WT mice. Two-dimensional gel electrophoresis proteomes of WAT depots were similar among groups, but several proteins involved in endocytosis and/or cytoskeletal organization (Ehd2, S100A10, actin), anticoagulation (S100A10, annexin A5), and age-related conditions (alpha2-macroglobulin, apolipoprotein A-I, transthyretin) showed significant differences between genotypes. Because Ehd2 may regulate endocytosis of Glut4, we measured Glut4 levels in the WAT depots of GHR(-) (/-) and WT mice. Inguinal WAT of 12-month-old GHR(-) (/-) mice displayed lower levels of Glut4 than WT. Overall, the protein changes detected in this study offer new insights into possible mechanisms contributing to enhanced insulin sensitivity and extended life span in GHR(-) (/-) mice.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Envelhecimento/fisiologia , DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Resistência à Insulina , Receptores da Somatotropina/genética , Adipócitos/citologia , Animais , Western Blotting , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Receptores da Somatotropina/metabolismo
15.
Mol Endocrinol ; 27(3): 524-35, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23349524

RESUMO

GH receptor (GHR) gene-disrupted mice (GHR-/-) have provided countless discoveries as to the numerous actions of GH. Many of these discoveries highlight the importance of GH in adipose tissue. For example GHR-/- mice are insulin sensitive yet obese with preferential enlargement of the sc adipose depot. GHR-/- mice also have elevated levels of leptin, resistin, and adiponectin, compared with controls leading some to suggest that GH may negatively regulate certain adipokines. To help clarify the role that GH exerts specifically on adipose tissue in vivo, we selectively disrupted GHR in adipose tissue to produce Fat GHR Knockout (FaGHRKO) mice. Surprisingly, FaGHRKOs shared only a few characteristics with global GHR-/- mice. Like the GHR-/- mice, FaGHRKO mice are obese with increased total body fat and increased adipocyte size. However, FaGHRKO mice have increases in all adipose depots with no improvements in measures of glucose homeostasis. Furthermore, resistin and adiponectin levels in FaGHRKO mice are similar to controls (or slightly decreased) unlike the increased levels found in GHR-/- mice, suggesting that GH does not regulate these adipokines directly in adipose tissue in vivo. Other features of FaGHRKO mice include decreased levels of adipsin, a near-normal GH/IGF-1 axis, and minimal changes to a large assortment of circulating factors that were measured such as IGF-binding proteins. In conclusion, specific removal of GHR in adipose tissue is sufficient to increase adipose tissue and decrease circulating adipsin. However, removal of GHR in adipose tissue alone is not sufficient to increase levels of resistin or adiponectin and does not alter glucose metabolism.


Assuntos
Tecido Adiposo/metabolismo , Deleção de Genes , Hormônio do Crescimento/metabolismo , Receptores da Somatotropina/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adipocinas/sangue , Adiposidade , Animais , Composição Corporal , Peso Corporal , Contagem de Células , Tamanho Celular , Citocinas/sangue , Feminino , Glucose/metabolismo , Homeostase , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão , Especificidade de Órgãos , Triglicerídeos/metabolismo
16.
Age (Dordr) ; 34(5): 1225-37, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21953241

RESUMO

Unintentional weight loss (wasting) in the elderly is a major health concern as it leads to increased mortality. Several studies have focused on muscle loss, but little is known about the mechanisms giving rise to loss of fat mass at old ages. To investigate potential mechanisms, white adipose tissue (WAT) characteristics and proteomic profiles were compared between adult (10-12-month-old) and aged (22-24-month-old) wild-type mice. Four individual WAT depots were analyzed to account for possible depot-specific differences. Proteomic profiles of WAT depots, along with body weights and compositions, plasma levels of insulin, leptin and adiponectin, insulin tolerance, adipocyte sizes, and products of oxidative damage in each WAT depot were determined. We found that lean mass remained constant while fat mass and insulin tolerance were decreased in old age, as were adipocyte sizes in the WAT depots. Proteomic results showed increased levels of enolase, pyruvate dehydrogenase E1ß, NAD(+)-dependent isocitrate dehydrogenase α, and ATP synthase subunit ß, and decreased levels of carbonic anhydrase 3 in WAT of aged mice. These data suggest increased aerobic glucose oxidation in wasting WAT, consistent with decreased insulin signaling. Also, Cu/Zn superoxide dismutase and two chaperones were increased in aged WAT depots, indicating higher stress resistance. In agreement, lipid peroxidation (HNE-His adducts) increased in old age, although protein oxidation (carbonyl groups) showed no increase. In conclusion, features of wasting WAT were similar in the four depots, including decreased adipocyte sizes and alterations in protein expression profiles that indicated decreased insulin sensitivity and increased lipid peroxidation.


Assuntos
Tecido Adiposo Branco/metabolismo , Tecido Adiposo/metabolismo , Envelhecimento/fisiologia , Resistência à Insulina/fisiologia , Insulina/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Adipócitos/metabolismo , Tecido Adiposo Branco/patologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/patologia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...