Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 33(4): 5468-5481, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30676771

RESUMO

Lysyl oxidases (LOXs) play a central role in extracellular matrix remodeling during development and tumor growth and fibrosis through cross-linking of collagens and elastin. We have limited knowledge of the structure and substrate specificity of these secreted enzymes. LOXs share a conserved C-terminal catalytic domain but differ in their N-terminal region, which is composed of 4 repeats of scavenger receptor cysteine-rich (SRCR) domains in LOX-like (LOXL) 2. We investigated by X-ray scattering and electron microscopy the low-resolution structure of the full-length enzyme and the structure of a shorter form lacking the catalytic domain. Our data demonstrate that LOXL2 has a rod-like structure with a stalk composed of the SRCR domains and the catalytic domain at its tip. We detected direct interaction between LOXL2 and tropoelastin (TE) and also LOXL2-mediated deamination of TE. Using proteomics, we identified several allysines together with cross-linked TE peptides. The elastin-like material generated was resistant to trypsin proteolysis and displayed mechanical properties similar to mature elastin. Finally, we detected the codistribution of LOXL2 and elastin in the vascular wall. Altogether, these data suggest that LOXL2 could participate in elastogenesis in vivo and could be used as a means of cross-linking TE in vitro for biomimetic and cell-compatible tissue engineering purposes.-Schmelzer, C. E. H., Heinz, A., Troilo, H., Lockhart-Cairns, M.-P., Jowitt, T. A., Marchand, M. F., Bidault, L., Bignon, M., Hedtke, T., Barret, A., McConnell, J. C., Sherratt, M. J., Germain, S., Hulmes, D. J. S., Baldock, C., Muller, L. Lysyl oxidase-like 2 (LOXL2)-mediated cross-linking of tropoelastin.


Assuntos
Aminoácido Oxirredutases/metabolismo , Tropoelastina/metabolismo , Animais , Células CHO , Domínio Catalítico/fisiologia , Linhagem Celular , Colágeno/metabolismo , Cricetulus , Elastina/metabolismo , Matriz Extracelular/metabolismo , Humanos , Proteólise , Especificidade por Substrato/fisiologia
2.
Sci Rep ; 6: 34347, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677855

RESUMO

TGFß plays key roles in fibrosis and cancer progression, and latency is conferred by covalent linkage to latent TGFß binding proteins (LTBPs). LTBP1 is essential for TGFß folding, secretion, matrix localization and activation but little is known about its structure due to its inherent size and flexibility. Here we show that LTBP1 adopts an extended conformation with stable matrix-binding N-terminus, extended central array of 11 calcium-binding EGF domains and flexible TGFß-binding C-terminus. Moreover we demonstrate that LTBP1 forms short filament-like structures independent of other matrix components. The termini bind to each other to facilitate linear extension of the filament, while the N-terminal region can serve as a branch-point. Multimerization is enhanced in the presence of heparin and stabilized by the matrix cross-linking enzyme transglutaminase-2. These assemblies will extend the span of LTBP1 to potentially allow simultaneous N-terminal matrix and C-terminal fibrillin interactions providing tethering for TGFß activation by mechanical force.

3.
FEBS Lett ; 590(15): 2398-407, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27391803

RESUMO

Tolloid proteinases are essential for tissue patterning and extracellular matrix assembly. The members of the family differ in their substrate specificity and activity, despite sharing similar domain organization. The mechanisms underlying substrate specificity and activity are complex, with variation between family members, and depend on both multimerization and substrate interaction. In addition, enhancers, such as Twisted gastrulation (Tsg), promote cleavage of tolloid substrate, chordin, to regulate growth factor signalling. Although Tsg and mammalian tolloid (mTLD) are involved in chordin cleavage, no interaction has been detected between them, suggesting Tsg induces a change in chordin to increase susceptibility to cleavage. All members of the tolloid family bind the N terminus of latent TGFß-binding protein-1, providing support for their role in TGFß signalling.


Assuntos
Proteínas de Ligação a TGF-beta Latente/genética , Peptídeo Hidrolases/genética , Metaloproteases Semelhantes a Toloide/genética , Fator de Crescimento Transformador beta1/genética , Animais , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mamíferos/genética , Camundongos , Proteínas/genética , Transdução de Sinais , Especificidade por Substrato
4.
J Biol Chem ; 291(24): 12732-12746, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27059954

RESUMO

Since the discovery of bone morphogenetic proteins (BMPs) as pluripotent cytokines extractable from bone matrix, it has been speculated how targeting of BMPs to the extracellular matrix (ECM) modulates their bioavailability. Understanding these processes is crucial for elucidating pathomechanisms of connective tissue disorders characterized by ECM deficiency and growth factor dysregulation. Here, we provide evidence for a new BMP targeting and sequestration mechanism that is controlled by the ECM molecule fibrillin-1. We present the nanoscale structure of the BMP-7 prodomain-growth factor complex using electron microscopy, small angle x-ray scattering, and circular dichroism spectroscopy, showing that it assumes an open V-like structure when it is bioactive. However, upon binding to fibrillin-1, the BMP-7 complex is rendered into a closed ring shape, which also confers latency to the growth factor, as demonstrated by bioactivity measurements. BMP-7 prodomain variants were used to map the critical epitopes for prodomain-growth factor and prodomain-prodomain binding. Together, these data show that upon prodomain binding to fibrillin-1, the BMP-7 complex undergoes a conformational change, which denies access of BMP receptors to the growth factor.


Assuntos
Proteína Morfogenética Óssea 7/metabolismo , Matriz Extracelular/metabolismo , Fibrilina-1/metabolismo , Microfibrilas/metabolismo , Sequência de Aminoácidos , Animais , Proteína Morfogenética Óssea 7/química , Proteína Morfogenética Óssea 7/genética , Linhagem Celular , Dicroísmo Circular , Fibrilina-1/química , Fibrilina-1/genética , Células HEK293 , Humanos , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Ressonância de Plasmônio de Superfície , Difração de Raios X
5.
Matrix Biol ; 55: 49-62, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26829466

RESUMO

Twisted gastrulation (Tsg) and chordin are secreted glycoproteins that function together as BMP (bone morphogenetic protein) antagonists to regulate BMP growth factor signalling. Chordin binds to BMPs, preventing them from interacting with their receptors and Tsg is known to strengthen this inhibitory complex. Tsg also acts as a BMP agonist by promoting cleavage of chordin by tolloid-family proteinases. Here we explore the structural mechanism through which Tsg exerts this dual activity. We have characterized the nanoscale structure of human Tsg using in-solution biomolecular analysis and show that Tsg is a globular monomer with a flattened cross shape. Tsg has a high proportion of N-linked glycans, in relation to its molecular weight, which supports a role in solubilising BMPs. Tsg binds with high affinity to the C-terminal region of chordin and was also able to inhibit BMP-7 signalling directly but did not have an effect on BMP-4 signalling. Although both Tsg and mammalian tolloid are involved in chordin cleavage, no interaction could be detected between them using surface plasmon resonance. Together these data suggest that Tsg functions as a BMP-agonist by inducing conformational change in chordin making it more susceptible to tolloid cleavage and as a BMP-antagonist either independently or via a chordin-mediated mechanism. Following single cleavage of chordin by tolloids, Tsg continues to strengthen the inhibitory complex, supporting a role for partially cleaved chordin in BMP regulation.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Proteínas/química , Animais , Linhagem Celular , Glicoproteínas/química , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas/fisiologia , Espalhamento a Baixo Ângulo , Transdução de Sinais , Difração de Raios X
6.
Biochem Soc Trans ; 43(5): 795-800, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517884

RESUMO

Chordin-mediated regulation of bone morphogenetic protein (BMP) family growth factors is essential in early embryogenesis and adult homoeostasis. Chordin binds to BMPs through cysteine-rich von Willebrand factor type C (vWC) homology domains and blocks them from interacting with their cell surface receptors. These domains also self-associate and enable chordin to target related proteins to fine-tune BMP regulation. The chordin-BMP inhibitory complex is strengthened by the secreted glycoprotein twisted gastrulation (Tsg); however, inhibition is relieved by cleavage of chordin at two specific sites by tolloid family metalloproteases. As Tsg enhances this cleavage process, it serves a dual role as both promoter and inhibitor of BMP signalling. Recent developments in chordin research suggest that rather than simply being by-products, the cleavage fragments of chordin continue to play a role in BMP regulation. In particular, chordin cleavage at the C-terminus potentiates its anti-BMP activity in a type-specific manner.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Biológicos , Proteínas/metabolismo , Transdução de Sinais , Metaloproteases Semelhantes a Toloide/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas/agonistas , Receptores de Proteínas Morfogenéticas Ósseas/química , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/química , Proteínas Morfogenéticas Ósseas/metabolismo , Glicoproteínas/química , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas/química , Proteólise , Metaloproteases Semelhantes a Toloide/química
7.
Proc Natl Acad Sci U S A ; 111(36): 13063-8, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25157165

RESUMO

Bone morphogenetic proteins (BMPs) orchestrate key cellular events, such as proliferation and differentiation, in development and homeostasis. Extracellular antagonists, such as chordin, are essential regulators of BMP signaling. Chordin binds to BMPs blocking interaction with receptors, and cleavage by tolloid proteinases is thought to relieve this inhibition. A model has been previously proposed where chordin adopts a horseshoe-like arrangement enabling BMP binding cooperatively by terminal domains (1). Here, we present the nanoscale structure of human chordin using electron microscopy, small angle X-ray scattering, and solution-based biophysical techniques, which together show that chordin indeed has a compact horseshoe-shaped structure. Chordin variants were used to map domain locations within the chordin molecule. The terminal BMP-binding domains protrude as prongs from the main body of the chordin structure, where they are well positioned to interact with the growth factor. The spacing provided by the chordin domains supports the principle of a cooperative BMP-binding arrangement that the original model implied in which growth factors bind to both an N- and C-terminal von Willebrand factor C domain of chordin. Using binding and bioactivity assays, we compared full-length chordin with two truncated chordin variants, such as those produced by partial tolloid cleavage. Cleavage of either terminal domain has little effect on the affinity of chordin for BMP-4 and BMP-7 but C-terminal cleavage increases the efficacy of chordin as a BMP-4 inhibitor. Together these data suggest that partial tolloid cleavage is insufficient to ablate BMP inhibition and the C-terminal chordin domains play an important role in BMP regulation.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Glicoproteínas/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Nanopartículas/química , Animais , Proteínas Morfogenéticas Ósseas/química , Glicoproteínas/ultraestrutura , Células HEK293 , Humanos , Hidrodinâmica , Imageamento Tridimensional , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Nanopartículas/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Soluções , Ressonância de Plasmônio de Superfície , Difração de Raios X
8.
J Biol Chem ; 286(46): 40266-75, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21908605

RESUMO

Collagen VI is a ubiquitous extracellular matrix protein that assembles into beaded microfibrils that form networks linking cells to the matrix. Collagen VI microfibrils are typically formed from a heterotrimer of the α1, α2, and α3 chains. The α3 chain is distinct as it contains an extended N terminus with up to 10 consecutive von Willebrand factor type A-domains (VWA). Here, we use solution small angle x-ray scattering (SAXS) and single particle analysis EM to determine the nanostructure of nine of these contiguous A-domains. Both techniques reveal a tight C-shape conformation for the A-domains. Furthermore, using biophysical approaches, we demonstrate that the N-terminal region undergoes a conformational change and a proportion forms dimers in the presence of Zn(2+). This is the first indication that divalent cations interact with collagen VI A-domains. A three-dimensional reconstruction of tissue-purified collagen VI microfibrils was generated using EM and single particle image analysis. The reconstruction showed the intricate architecture of the collagen VI globular regions, in particular the highly structurally conserved C-terminal region and variations in the appearance of the N-terminal region. The N-terminal domains project out from the globular beaded region like angled radial spokes. These could potentially provide interactive surfaces for other cell matrix molecules.


Assuntos
Colágeno Tipo VI/química , Microfibrilas/química , Multimerização Proteica/fisiologia , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Células HEK293 , Humanos , Microfibrilas/genética , Microfibrilas/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...