Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(22): 16350-16357, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38805088

RESUMO

Progress in single molecule fluorescence experiments have enabled an in-depth characterization of fluorophores, ranging from their photophysical rates to the orientation of their emission dipole moments in three dimensions. However, one crucial spatial information remains elusive: the molecule orientation relative to its emission dipole moment. One can retrieve the latter only by the use of another non-colinear transition dipole moment. We experimentally demonstrate the optical retrieval of this information for single terrylene (Tr) molecules in a 30 nm thin para-terphenyl matrix. We show, through second-order correlation measurements at varying excitation power and polarization, that Tr molecules experience an optically induced deshelving of their triplet states, mediated by two orthogonal intra-molecular triplet-triplet absorption dipole moments. We take advantage of these two transition dipole moments to retrieve the full orientation of the Tr molecule, employing a 3-level scheme for the molecule photophysics and analytical calculations for the exciting electric field distribution. This modelling approach enables us to accurately describe both varying power and polarization measurements, giving access to the molecule's photophysical rates and to its complete orientation in three dimensions. This includes the orientation of the singlet emission dipole moment in the laboratory frame, and the orientation of the molecule plane with respect to the singlet emission dipole moment.

2.
Langmuir ; 39(50): 18252-18262, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38051255

RESUMO

The photonic responses of densely packed dye molecule assemblies are strongly dependent on their organization and environment. The precise control of molecular orientations and distances relative to the substrate and to each other is thus a key point in the design of photonic molecular materials. Herein, we report the preparation of a homogeneous and well-organized single monolayer of the perylenediimide (PDI) derivative by means of the Langmuir-Blodgett technique. Its optical properties disclose an intense charge-transfer excitonic absorption band related to important intermolecular coupling. Furthermore, an important immunity to photobleaching is observed for such a molecular assembly. The dipolar orientations of the molecules along the substrate have been unambiguously determined by angle-of-incidence-resolved polarized absorption and back-focal-plane fluorescence mapping. In addition, time-resolved spectroscopy reveals a fast two-dimensional diffusion of excitons consistent with strong π-stacking of adjacent PDI molecules.

3.
ACS Omega ; 7(36): 31682-31690, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120011

RESUMO

A long-term reusable sensor that provides the opportunity to easily regenerate the active surface and minimize the occurrence of undesired absorption events is an appealing solution that helps to cut down the costs and improve the device performances. Impressive advances have been made in the past years concerning the development of novel cutting-edge sensors, but the reusability can currently represent a challenge. Direct shielding of the sensor surface is not always applicable, because it can impact the device performance. This study reports an antiadhesive layer (AAL) made of 90 mg/mL DNA sodium salt from salmon testes (ssstDNA) for passivating gold plasmonic sensor surfaces. Our gold two-dimensional (2D) nanostructured plasmonic metasurfaces modified with AAL were used for DNA quantification. AAL is thin enough that the plasmonic sensor remains sensitive to subsequent deposition of DNA, which serves as an analyte. AAL protects the gold surface from unwanted nonspecific adsorption by enabling wash-off of the deposited analyte after analysis and thus recovery of the LSPR peak position (rLSPR). The calibration curve obtained on a single nanostructure (Achiral Octupolar, 100 nm pitch) gave an LOD = 105 ng/mL and an extraordinary dynamic range, performances comparable or superior to those of commercial UV-vis spectrometers for acid nucleic dosage. Two different analytes were tested: ssstDNA (∼2000 bp) in deionized water and double-strand DNA (dsDNA) of 546-1614 bp in 100 mM Tris buffer and 10 mM MgCl2. The two nanostructures (Achiral Octupolar 25 and 100) were found to have the same sensitivity to DNA in deionized water but different sensitivity to DNA in a salt/buffer solution, opening a potential for solute discrimination. To the best of our knowledge, this is the first report on the use of AAL made of several kilobase-pairs-long dsDNA to produce a reusable plasmonic sensor. The working principle and limitations are drawn based on the LSPR and SERS study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...