Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000761

RESUMO

This study explores the enhancement of electrical conductivity in polymer composites by incorporating carbon nanotubes (CNTs) into a co-continuous poly(lactic acid)/low-density polyethylene (PLA/LDPE) blend, creating a double percolation structure. Theoretical thermodynamic predictions indicate that CNTs preferentially localize in the LDPE phase. The percolation threshold of CNTs in the PLA/LDPE/CNT composites was 0.208 vol% (5.56 wt%), an 80% reduction compared to the LDPE/CNT composite, due to the double percolation structure. This thermodynamic migration of CNTs from PLA to LDPE significantly enhanced conductivity, achieving a 13.8-fold increase at a 7.5 wt% CNT loading compared to the LDPE/CNT composite. The localization of CNTs was driven by thermodynamic, kinetic, and rheological factors, with viscosity differences between PLA and LDPE causing dense CNT aggregation in LDPE. Initial contact of CNTs with PLA reduced aggregation, allowing PLA to infiltrate CNT aggregates during melt-mixing, which influenced the final morphology and electrical conductivity. These findings provide new insights into the fabrication of conductive polymer composites for force sensor applications.

2.
Polymers (Basel) ; 16(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000796

RESUMO

Thermo-responsive, biocompatible polyurethane (PU) with shape memory properties is highly desirable for biomedical applications. An innovative approach to producing wound closure strips using shape memory polymers (SMPs) is of significant interest. In this work, PU composed of polycaprolactone (PCL) and 1,4-butanediol (BDO) was synthesized using two-step polymerization. Palm oil (PO) was added to PU for enhancing the Young's modulus of the PU beyond the set criterion of 130 MPa. It was found that PU had the ability to crystallize at room temperature and the segments of individual PCL and BDO polyurethanes crystallized separately. The crystalline domains and hard segment of PU greatly affected the tensile properties. The reduction of crystalline domains by the addition of PO and deformation at the higher melting temperature of the crystalline PCL polyurethane phase improved the shape fixity and shape recovery ratios. The new irreversible phase, raised from the permanent deformation upon stretching at the between melting temperature of the crystalline PCL and BDO polyurethanes of 70 °C, resulted in a decrease in shape fixity ratio after the first thermomechanical stretching-recovering cycles. The demonstration of PU as a wound closure strip showed its efficiency and potential until the surgical wound healed.

3.
Polymers (Basel) ; 15(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37896350

RESUMO

In this study, we utilized a hybridization approach for two different fibers to overcome the drawbacks of single-fiber-reinforced PLA composites. Coir fiber and bamboo leaf fiber were used as reinforcing natural fibers as their properties complement one another. Additionally, we combined thermal annealing with hybridization techniques to further improve the overall properties of the composites. The results showed that the hybridization of BF: CF with a ratio of 1:2 gave PLA-based hybrid composites optimal mechanical and thermal properties. Furthermore, the improvement in the thermal stability of hybrid composites, attributable to an increase in crystallinity, was a result of thermal annealing. The improvement in HDT in annealed 1BF:2CF hybrid composite was about 13.76% higher than that of the neat PLA. Annealing of the composites led to increased crystallinity, which was confirmed using differential scanning calorimetry (DSC). The synergistic effect of hybridization and annealing, leading to the improvement in the thermal properties, opened up the possibilities for the use of PLA-based composites. In this study, we demonstrated that a combined technique can be utilized as a strategy for improving the properties of 100% biocomposites and help overcome some limitations of the use of PLA in many applications.

4.
Polymers (Basel) ; 15(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904502

RESUMO

Biodegradable polymers play a significant role in medical applications, especially internal devices because they can be broken down and absorbed into the body without producing harmful degradation products. In this study, biodegradable polylactic acid (PLA)-polyhydroxyalkanoate (PHA)-based nanocomposites with various PHA and nano-hydroxyapatite (nHAp) contents were prepared using solution casting method. Mechanical properties, microstructure, thermal stability, thermal properties, and in vitro degradation of the PLA-PHA-based composites were investigated. PLA-20PHA/5nHAp was shown to give the desired properties so it was selected to investigate electrospinnability at different applied high voltages. PLA-20PHA/5nHAp composite shows the highest improvement of tensile strength at 36.6 ± 0.7 MPa, while PLA-20PHA/10nHAp composite shows the highest thermal stability and in vitro degradation at 7.55% of weight loss after 56 days of immersion in PBS solution. The addition of PHA in PLA-PHA-based nanocomposites improved elongation at break, compared to the composite without PHA. PLA-20PHA/5nHAp solution was successfully fabricated into fibers by electrospinning. All obtained fibers showed smooth and continuous fibers without beads with diameters of 3.7 ± 0.9, 3.5 ± 1.2, and 2.1 ± 0.7 µm at applied high voltages of 15, 20, and 25 kV, respectively.

5.
Polymers (Basel) ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771798

RESUMO

This study illustrated the potential applications of thermoresponsive poly(N-isopropylacrylamide) (PNIPAm) grafted nylon membranes with different grafting yields and grafting architecture. The thermoresponsive gating performance at temperatures below and above the lower critical solution temperature (LCST) of PNIPAm (32 °C) were demonstrated. The linear PNIPAm-grafted nylon membrane exhibited a sharp response over the temperature range 20-40 °C. The grafting yield of 25.5% and 21.9%, for linear and crosslinked PNIPAm respectively, exhibited highest thermoresponsive gating function for water flux and had a stable and repeatable "open-closed" switching function over 5 cycle operations. An excellent oil/water separation was obtained at T < 32 °C, at which the hydrophilic behavior was observed. The linear PNIPAm-grafted nylon membrane with 35% grafting yield had the highest separation efficiency of 99.7%, while PNIPAm structures were found to be independent of the separation efficiency. In addition, the membranes with thermoresponsive gas permeability were successfully achieved. The O2 and CO2 transmission rates through the PNIPAm-grafted nylon membranes decreased when the grafting yield increased, showing the better gas barrier property. The permeability ratio of CO2 to O2 transmission rates of both PNIPAm architectures at 25 °C and 35 °C were around 0.85 for low grafting yields, and approximately 1 for high grafting yields. Ultimately, this study demonstrated the possibility of using these thermoresponsive smart membranes in various applications.

6.
Polymers (Basel) ; 15(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36771955

RESUMO

Bamboo leaf fiber (BLF) was incorporated into an eco-friendly foam cushion made from natural rubber latex (NRL) to enhance the biodegradation rate. The objective of this work was to investigate the effects of BLF content on the foam structure, mechanical properties, cushion performance, and biodegradability. The NRL foam cushion nets with and without BLF were prepared using the Dunlop method along with microwave-assisted vulcanization. BLF (90-106 µm in length) at various loadings (0.00, 2.50, 5.00, 7.50, and 10.00 phr) were introduced to the latex compounds before gelling and vulcanizing steps. Scanning electron microscopy (SEM) showed that the BLF in a NRL foam caused an increase in cell size and a decrease in the number of cells. The changes in the cell structure and number of cells resulted in increases in the bulk density, hardness, compression set, compressive strength, and cushion coefficient. A soil burial test of 24 weeks revealed faster weight loss of 1.8 times when the BLF content was 10.00 phr as compared to the NRL foam without BLF. The findings of this work suggest the possibility of developing an eco-friendly cushion with a faster degradation rate while maintaining cushion performance, which could be a better alternative for sustainable packaging in the future.

7.
Polymers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236110

RESUMO

Nano-hydroxyapatite (nHAp) as a bio-filler used in PLA composites was prepared from fish by acid deproteinization (1DP) and a combination of acid-alkali deproteinization (2DP) followed by alkali heat treatment. Moreover, the PLA/nHAp composite films were developed using solution casting method. The mechanical and thermal properties of the PLA composite films with nHAp from different steps deproteinization and contents were compared. The physical properties analysis confirmed that the nHAp can be prepared from fish scales using both steps deproteinization. 1DP-nHAp showed higher surface area and lower crystallinity than 2DP-nHAp. This gave advantage of 1DP-nHAp for use as filler. PLA composite with 1DP-nHAp gave tensile strength of 66.41 ± 3.63 MPa and Young's modulus of 2.65 ± 0.05 GPa which were higher than 2DP-nHAp at the same content. The addition of 5 phr 1DP-nHAp into PLA significantly improved the tensile strength and Young's modulus. PLA composite solution with 1DP-nHAp at 5 phr showed electrospinnability by giving continuous fibers without beads.

8.
Polymers (Basel) ; 14(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080626

RESUMO

This work aims to improve the mechanical properties of starch-based hydrogels using a double-network (DN) strategy. The single network (SN) starch hydrogel was first prepared using glutaraldehyde as a crosslinker. The compressive properties of the SN hydrogels were influenced by both crosslinker content and crosslinking time. The SN starch hydrogel possessing the best mechanical properties was then fabricated into DN hydrogels. Poly(vinyl alcohol) (PVA) and borax were used as a secondary polymer and a crosslinker, respectively. The PVA-borax complexation partly enhanced the DN hydrogel's compressive modulus by 30% and its toughness by 39%. DN hydrogels were found to have denser microstructures than SN hydrogels. To be specific, their walls thickened and grew more continuous while their pores shrank. The increased crosslinking density resulted in changes to the microstructure, which were well correlated with their porosity and water uptake capacity. An in vitro cytotoxicity test of the DN hydrogels revealed that they were non-toxic to chondrocytes. This work demonstrated that double networking is a simple but effective strategy for improving mechanical properties of starch-based hydrogels without sacrificing their biocompatibility. This approach can be used to tailor hydrogel properties to fulfill requirements for biomedical applications, such as tissue engineering and other related fields.

9.
Polymers (Basel) ; 14(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146067

RESUMO

Generally, poly(ethylene glycol) (PEG) is added to poly(lactic acid) (PLA) to reduce brittleness and improve mechanical properties. However, shape memory properties of PEG/PLA blends suffered due to the blend's incompatibility. To enhance shape memory abilities of the blends, 0.45% maleic anhydride-grafted poly(lactic acid) (PLA-g-MA) was used as a compatibilizer. Thermal and mechanical properties, morphologies, microstructures, and shape memory properties of the blends containing different PLA-g-MA contents were investigated. The compatibilized blend with 2 wt% PLA-g-MA exhibited enhanced tensile modulus, strength, and elongation at break, as well as a lower glass transition temperature and degree of crystallinity than the uncompatibilized blend. Results revealed that PLA-g-MA improved interfacial adhesion between phases and promoted chain entanglement. Shape fixity performance of the compatibilized blends were comparable to that of neat PLA. The compatibilized blend containing 2 wt% PLA-g-MA possessed the best shape fixity and recovery performance. Although a high recovery temperature was expected to enhance the recovery of the PEG/PLA blends, the compatibilized blends can be recovered to their original shape at a lower temperature than the PLA. This study illustrated the possibility of optimizing PLA properties to meet requirements necessary for biomedical applications.

10.
Carbohydr Polym ; 242: 116366, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32564838

RESUMO

A film containing a stable and well-dispersed hydrophobic phase in a surfactant-free bio-based hydrophilic matrix is proposed. In this study, an aqueous suspension of rod-like chitin nanocrystals (ChiNCs), mixed with paraffin oil, form an oil-in-water Pickering emulsion with a droplet diameter of 3 µm. These emulsions mixed with a 5 wt% starch solution formed homogeneous composite films by solvent casting. Various amounts of emulsion were incorporated, leading to self-supported films with a volume of oil as high as 45 vol%, with less than 1% of ChiNCs. This model inclusion system leads to droplets homogeneously dispersed throughout the composite films, as revealed by microscopy (SEM and CLSM) with mechanical properties controlled by the matrix. Finally, the droplets were easily released from the matrix by enzymatic hydrolysis. This easy-to-implement transparent film proved to be a good candidate when it is desirable to disperse a poor water-soluble component in a hydrophilic edible matrix.

11.
Colloids Surf B Biointerfaces ; 103: 244-52, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23201744

RESUMO

The effect of PEGylation on the thermal response and protein adsorption resistance of crosslinked PNIPAm microgels was investigated. It was found that the presence of PEG, its molecular weight (M(n) 300 and 1100 g/mol) and its concentration (10, 20, and 30 wt.%) each significantly influenced both the value and breadth of the volume phase transition temperature (VPTT) and the adsorption of bovine serum albumin (BSA) on the surface of the microgels. Specifically, as the degree of PEGylation increased, the value and breadth of the VPTT increased, and the adsorption of BSA decreased significantly. The critical concentration that minimizes protein adsorption on PNIPAm-co-PEGMa microgels was found to be 20 wt.% of PEGMa. This critical concentration was confirmed qualitatively using laser scanning confocal microscopy (LSCM). Evidence for the effect of the molecular weight of PEG on the structure of PNIPAm-co-PEGMa microgels was provided by thermal analysis using differential scanning calorimetry. The VPTT study revealed significant differences in the composition of the microgels when PEGMa samples with two different molecular weights were used as comonomers with PNIPAm. It was determined that the molecular weight and concentration of PEGMa controls the structure of the microgels, which in turn influences their temperature response and protein adsorption resistance properties of the microgels. Our work establishes specific design concepts for controlling the molecular architecture of the hydrogels in order to tune their temperature response and biocompatibility for use in a variety of biomedical applications such as, cell encapsulation, drug delivery and tissue engineering applications.


Assuntos
Resinas Acrílicas/química , Géis/química , Polietilenoglicóis/química , Soroalbumina Bovina/metabolismo , Temperatura , Adsorção , Animais , Varredura Diferencial de Calorimetria , Bovinos , Fluoresceína-5-Isotiocianato , Metacrilatos/química , Microscopia Confocal , Microscopia de Fluorescência , Peso Molecular , Transição de Fase
12.
Langmuir ; 27(22): 13468-80, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21962146

RESUMO

The overall goal of this study was to fabricate multifunctional core-shell microcapsules with biological cells encapsulated within the polymer shell. Biocompatible temperature responsive microcapsules comprised of silicone oil droplets (multicores) and yeast cells embedded in a polymer matrix (shell) were prepared using a novel microarray approach. The cross-linked polymer shell and silicone multicores were formed in situ via photopolymerization of either poly(N-isopropylacryamide)(PNIPAm) or PNIPAm, copolymerized with poly(ethylene glycol monomethyl ether monomethacrylate) (PEGMa) within the droplets of an oil-in-water-in-oil double emulsion. An optimized recipe yielded a multicore-shell morphology, which was characterized by optical and laser scanning confocal microscopy (LSCM) and theoretically confirmed by spreading coefficient calculations. Spreading coefficients were calculated from interfacial tension and contact angle measurements as well as from the determination of the Hamaker constants and the pair potential energies. The effects of the presence of PEGMa, its molecular weight (M(n) 300 and 1100 g/mol), and concentration (10, 20, and 30 wt %) were also investigated, and they were found not to significantly alter the morphology of the microcapsules. They were found, however, to significantly improve the viability of the yeast cells, which were encapsulated within PNIPAm-based microcapsules by direct incorporation into the monomer solutions, prior to polymerization. Under LSCM, the fluorescence staining for live and dead cells showed a 30% viability of yeast cells entrapped within the PNIPAm matrix after 45 min of photopolymerization, but an improvement to 60% viability in the presence of PEGMa. The thermoresponsive behavior of the microcapsules allows the silicone oil cores to be irreversibly ejected, and so the role of the silicone oil is 2-fold. It facilitates multifunctionality in the microcapsule by first being used as a template to obtain the desired core-shell morphology, and second it can act as an encapsulant for oil-soluble drugs. It was shown that the encapsulated oil droplets were expelled above the volume phase transition temperature of the polymer, while the collapsed microcapsule remained intact. When these microcapsules were reswollen with an aqueous solution, it was observed that the hollow compartments refilled. In principle, these hollow-core microcapsules could then be filled with water-soluble drugs that could be delivered in vivo in response to temperature.


Assuntos
Resinas Acrílicas/química , Cápsulas , Materiais Biocompatíveis , Fluorescência , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...