Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 87(5): 472-487, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35790381

RESUMO

Cyanidiales were named enigmatic microalgae due to their unique polyextreme properties, considered for a very long time unattainable for eukaryotes. Cyanidiales mainly inhabit hot sulfuric springs with high acidity (pH 0-4), temperatures up to 56°C, and ability to survive in the presence of dissolved heavy metals. Owing to the minimal for eukaryotes genome size, Cyanidiales have become one of the most important research objects in plant cell physiology, biochemistry, molecular biology, phylogenomics, and evolutionary biology. They play an important role in studying many aspects of oxygenic photosynthesis and chloroplasts origin. The ability to survive in stressful habitats and the corresponding metabolic pathways were acquired by Cyanidiales from archaea and bacteria via horizontal gene transfer (HGT). Thus, the possibility of gene transfer from prokaryotes to eukaryotes was discovered, which was a new step in understanding of the origin of eukaryotic cell.


Assuntos
Eucariotos , Transferência Genética Horizontal , Archaea/genética , Evolução Biológica , Eucariotos/genética , Filogenia
2.
Biochemistry (Mosc) ; 86(10): 1181-1191, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903149

RESUMO

Imbalanced light absorption by photosystem I (PSI) and photosystem II (PSII) in oxygenic phototrophs leads to changes in interaction of photosystems altering the linear electron flow. In plants and green algae, this imbalance is mitigated by a partial migration of the chlorophyll a/b containing light-harvesting antenna between the two photosystem core complexes. This migration is registered as fluorescence changes of the pigment apparatus and is termed the reverse transitions between States 1 and 2. By contrast, the molecular mechanism of State 1/2 transitions in phycobilisome (PBS)-containing photosynthetics, cyanobacteria and red algae, is still insufficiently understood. The suggested hypotheses - PBS movement along the surface of thylakoid membrane between PSI and PSII complexes, reversible PBS detachment from the dimeric PSII complex, and spillover - have some limitations as they do not fully explain the accumulated data. Here, we have recorded changes in the stationary fluorescence emission spectra of red algae and cyanobacteria in States 1/2 at room temperature, which allowed us to offer an explanation of the existing contradictions. The change of room temperature fluorescence of chlorophyll belonged to PSII was revealed, while the fluorescence of PBS associated with the PSII complexes remained during States 1/2 transitions at the stable level. Only the reversible dissociation of PBS from the monomeric PSI was revealed earlier which implied different degree of surface contact of PBS with the two photosystems. The detachment of PBS from the PSI corresponds to ferredoxin oxidation as electron carrier and the increase of cyclic electron transport in the pigment apparatus in State I.


Assuntos
Cianobactérias/metabolismo , Microalgas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Cianobactérias/citologia , Transporte de Elétrons , Microalgas/citologia , Oxirredução , Fotossíntese , Espectrometria de Fluorescência , Tilacoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...