Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(8): 083511, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050092

RESUMO

The time-resolving magnetic recoil spectrometer (MRSt) is a transformative diagnostic that will be used to measure the time-resolved neutron spectrum from an inertial confinement fusion implosion at the National Ignition Facility (NIF). It uses a CD foil on the outside of the hohlraum to convert fusion neutrons to recoil deuterons. An ion-optical system positioned outside the NIF target chamber energy-disperses and focuses forward-scattered deuterons. A pulse-dilation drift tube (PDDT) subsequently dilates, un-skews, and detects the signal. While the foil and ion-optical system have been designed, the PDDT requires more development before it can be implemented. Therefore, a phased plan is presented that first uses the foil and ion-optical systems with detectors that can be implemented immediately-namely CR-39 and hDISC streak cameras. These detectors will allow the MRSt to be commissioned in an intermediate stage and begin collecting data on a reduced timescale, while the PDDT is developed in parallel. A CR-39 detector will be used in phase 1 for the measurement of the time-integrated neutron spectra with excellent energy-resolution, necessary for the energy calibration of the system. Streak cameras will be used in phase 2 for measurement of the time-resolved spectrum with limited spectral coverage, which is sufficient to diagnose the time-resolved ion temperature. Simulations are presented that predict the performance of the streak camera detector, indicating that it will achieve excellent burn history measurements at current yields, and good time-resolved ion-temperature measurements at yields above 3 × 1017. The PDDT will be used for optimal efficiency and resolution in phase 3.

2.
Rev Sci Instrum ; 93(3): 033505, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364969

RESUMO

A new Magnetic Recoil Spectrometer (MRSt) is designed to provide time-resolved measurements of the energy spectrum of neutrons emanating from an inertial confinement fusion implosion at the National Ignition Facility. At present, time integrated parameters are being measured using the existing magnet recoil and neutron time-of-flight spectrometers. The capability of high energy resolution of 2 keV and the extension to high time resolution of about 20 ps are expected to improve our understanding of conditions required for successful fusion experiments. The layout, ion-optics, and specifications of the MRSt will be presented.

3.
Rev Sci Instrum ; 92(3): 033514, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820013

RESUMO

The time-resolving Magnetic Recoil Spectrometer (MRSt) for the National Ignition Facility (NIF) has been identified by the US National Diagnostic Working Group as one of the transformational diagnostics that will reshape the way inertial confinement fusion (ICF) implosions are diagnosed. The MRSt will measure the time-resolved neutron spectrum of an implosion, from which the time-resolved ion temperature, areal density, and yield will be inferred. Top-level physics requirements for the MRSt were determined based on simulations of numerous ICF implosions with varying degrees of alpha heating, P2 asymmetry, and mix. Synthetic MRSt data were subsequently generated for different configurations using Monte-Carlo methods to determine its performance in relation to the requirements. The system was found to meet most requirements at current neutron yields at the NIF. This work was supported by the DOE and LLNL.

4.
Rev Sci Instrum ; 89(10): 10G125, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399712

RESUMO

Crystal x-ray imaging is frequently used in inertial confinement fusion and laser-plasma interaction applications as it has advantages compared to pinhole imaging, such as higher signal throughput, better achievable spatial resolution, and chromatic selection. However, currently used x-ray detectors are only able to obtain a single time resolved image per crystal. The dilation aided single-line-of-sight x-ray camera described here was designed for the National Ignition Facility (NIF) and combines two recent diagnostic developments, the pulse dilation principle used in the dilation x-ray imager and a ns-scale multi-frame camera that uses a hold and readout circuit for each pixel. This enables multiple images to be taken from a single-line-of-sight with high spatial and temporal resolution. At the moment, the instrument can record two single-line-of-sight images with spatial and temporal resolution of 35 µm and down to 35 ps, respectively, with a planned upgrade doubling the number of images to four. Here we present the dilation aided single-line-of-sight camera for the NIF, including the x-ray characterization measurements obtained at the COMET laser, as well as the results from the initial timing shot on the NIF.

5.
Rev Sci Instrum ; 89(10): 10G109, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399958

RESUMO

We apply a cascaded linear model analysis to a micro-channel plate x-ray framing camera. We establish a theoretical expression of the Noise Power Spectrum (NPS) at the detector's output and assess its accuracy by comparing it to the NPS of Monte Carlo simulations of the detector's response to a uniform illumination. We also demonstrate that fitting the NPS of experimental data against a parametric model based on this expression can yield valuable information on the imaging ability of framing cameras, offering an alternative approach to the usual method employed to measure their modulation transfer functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...