Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(1): e9761, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36713493

RESUMO

Body shape is a foundational trait on the differences between species. However, morphological measurements can be simplifying and, for many taxa, can be distorted upon preservation or are difficult to collect due to a species' habit or size. Scientific illustrations, or pictographs, provide information on a species' morphology but are rarely used as traits. Here, we demonstrate the use of pictographs using two shark clades: Lamniformes and Carcharhinidae + Sphyrnidae. After collecting 473 pictographs from 67 species across 12 sources, we used landmarking to show that measurements derived from pictographs do not substantially differ from those garnered from specimens. We then used Elliptical Fourier Analysis and principal components analysis to construct a multivariate morphospace. Using global shape measurements, we evaluated whether substantial variability in body shape was introduced by habitat association, endemism, or illustrator. We found that a species' habitat preference strongly influenced the discovery rate of pictographs and the within-species similarity. While illustrations varied within a species, only a limited set of illustrators exhibited significant systematic variability. We also demonstrated the utility of pictographs in two common applications. For ancestral trait reconstruction, we developed a simple extension to estimate body shapes from principal components and, in doing so, observed that the Lamnid body plan diverged from the rest of Lamniformes ~100 MYA. For phylogenetic generalized linear mixed models (PGLMM), we found that the pictographs had greater explanatory power than traditional morphological measurements. We used the PGLMM to show that higher endemism across Carcharhinidae + Sphyrnidae taxa correlates with body shapes that have caudal fins with small heterocercal angles and more pronounced second dorsal/anal fins. We concluded that pictographs are likely an undervalued and easy-to-digitize data source on a species' body shape with numerous established methods for comparing pictographs and assessing variability.

2.
Ecology ; 102(5): e03308, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33577089

RESUMO

The importance of climate, habitat structure, and higher trophic levels on microbial diversity is only beginning to be understood. Here, we examined the influence of climate variables, plant morphology, and the abundance of aquatic invertebrates on the microbial biodiversity of the northern pitcher plant Sarracenia purpurea. The plant's cup-shaped leaves fill with rainwater and support a miniature, yet full-fledged, ecosystem with a diverse microbiome that decomposes captured prey and a small network of shredding and filter-feeding aquatic invertebrates that feed on microbes. We characterized pitcher microbiomes of 108 plants sampled at 36 sites from Florida to Quebec. Structural equation models revealed that annual precipitation and temperature, plant size, and midge abundance had direct effects on microbiome taxonomic and phylogenetic diversity. Climate variables also exerted indirect effects through plant size and midge abundance. Further, spatial structure and climate influenced taxonomic composition, but not phylogenetic composition. Our results suggest that direct effects of midge abundance and climate and indirect effects of climate through its effect on plant-associated factors lead to greater richness of microbial phylotypes in warmer, wetter sites.


Assuntos
Microbiota , Sarraceniaceae , Ecossistema , Florida , Cadeia Alimentar , Interações Microbianas , Filogenia , Quebeque
3.
Am J Bot ; 105(10): 1735-1747, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30300935

RESUMO

PREMISE OF THE STUDY: Community phylogenetic methods incorporate information on evolutionary relationships into studies of organismal assemblages. We used a community phylogenetic framework to investigate relationships and biogeographic affinities and to calculate phylogenetic signal of endemism and invasiveness for the flora of the pine rocklands-a globally critically imperiled ecosystem with a significant portion of its distribution in South Florida, United States. METHODS: We reconstructed phylogenetic relationships of 538 vascular plant taxa, which represent 92.28% of the vascular flora of the pine rocklands. We estimated phylogenetic signal for endemism and invasiveness using phylogenetic generalized linear mixed models. We determined the native range for each species in the data set and calculated the total number of species sourced from each region and all possible combinations of these regions. KEY RESULTS: The pine rockland flora includes representatives of all major vascular plant lineages, and most species have native ranges in the New World. There was strong phylogenetic signal for endemism, but not for invasiveness. CONCLUSIONS: Community phylogenetics has high potential value for conservation planning, particularly for fragmented and endangered ecosystems like the pine rockland. Strong phylogenetic signal for endemic species in our data set, which also tend to be threatened or endangered, can help to identify species at risk, as well as fragments where those species occur, highlighting conservation priorities. Our results indicate, at least in the pine rockland ecosystem, no phylogenetic signal for invasive species, and thus other information must be used to predict the potential for invasiveness.


Assuntos
Evolução Biológica , Biota , Embriófitas/fisiologia , Dispersão Vegetal , Conservação dos Recursos Naturais , Ecossistema , Embriófitas/classificação , Florida , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...