Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(1): e0257933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34990455

RESUMO

Giant kelp populations that support productive and diverse coastal ecosystems at temperate and subpolar latitudes of both hemispheres are vulnerable to changing climate conditions as well as direct human impacts. Observations of giant kelp forests are spatially and temporally uneven, with disproportionate coverage in the northern hemisphere, despite the size and comparable density of southern hemisphere kelp forests. Satellite imagery enables the mapping of existing and historical giant kelp populations in understudied regions, but automating the detection of giant kelp using satellite imagery requires approaches that are robust to the optical complexity of the shallow, nearshore environment. We present and compare two approaches for automating the detection of giant kelp in satellite datasets: one based on crowd sourcing of satellite imagery classifications and another based on a decision tree paired with a spectral unmixing algorithm (automated using Google Earth Engine). Both approaches are applied to satellite imagery (Landsat) of the Falkland Islands or Islas Malvinas (FLK), an archipelago in the southern Atlantic Ocean that supports expansive giant kelp ecosystems. The performance of each method is evaluated by comparing the automated classifications with a subset of expert-annotated imagery (8 images spanning the majority of our continuous timeseries, cumulatively covering over 2,700 km of coastline, and including all relevant sensors). Using the remote sensing approaches evaluated herein, we present the first continuous timeseries of giant kelp observations in the FLK region using Landsat imagery spanning over three decades. We do not detect evidence of long-term change in the FLK region, although we observe a recent decline in total canopy area from 2017-2021. Using a nitrate model based on nearby ocean state measurements obtained from ships and incorporating satellite sea surface temperature products, we find that the area of giant kelp forests in the FLK region is positively correlated with the nitrate content observed during the prior year. Our results indicate that giant kelp classifications using citizen science are approximately consistent with classifications based on a state-of-the-art automated spectral approach. Despite differences in accuracy and sensitivity, both approaches find high interannual variability that impedes the detection of potential long-term changes in giant kelp canopy area, although recent canopy area declines are notable and should continue to be monitored carefully.


Assuntos
Ecossistema , Florestas , Kelp/crescimento & desenvolvimento , Tecnologia de Sensoriamento Remoto/métodos , Imagens de Satélites/métodos , Temperatura , Mudança Climática , Ilhas Malvinas
2.
Proc Natl Acad Sci U S A ; 116(6): 1902-1909, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30718393

RESUMO

Citizen science has proved to be a unique and effective tool in helping science and society cope with the ever-growing data rates and volumes that characterize the modern research landscape. It also serves a critical role in engaging the public with research in a direct, authentic fashion and by doing so promotes a better understanding of the processes of science. To take full advantage of the onslaught of data being experienced across the disciplines, it is essential that citizen science platforms leverage the complementary strengths of humans and machines. This Perspectives piece explores the issues encountered in designing human-machine systems optimized for both efficiency and volunteer engagement, while striving to safeguard and encourage opportunities for serendipitous discovery. We discuss case studies from Zooniverse, a large online citizen science platform, and show that combining human and machine classifications can efficiently produce results superior to those of either one alone and how smart task allocation can lead to further efficiencies in the system. While these examples make clear the promise of human-machine integration within an online citizen science system, we then explore in detail how system design choices can inadvertently lower volunteer engagement, create exclusionary practices, and reduce opportunity for serendipitous discovery. Throughout we investigate the tensions that arise when designing a human-machine system serving the dual goals of carrying out research in the most efficient manner possible while empowering a broad community to authentically engage in this research.


Assuntos
Participação da Comunidade/métodos , Eficiência , Aprendizado de Máquina , Ciência , Disciplinas das Ciências Biológicas/educação , Compreensão , Metodologias Computacionais , Humanos , Disciplinas das Ciências Naturais/educação , Pesquisa , Projetos de Pesquisa , Inquéritos e Questionários
3.
Appl Plant Sci ; 6(2): e1023, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29732254

RESUMO

PREMISE OF THE STUDY: Biological collections are uniquely poised to inform the stewardship of life on Earth in a time of cataclysmic biodiversity loss. Efforts to fully leverage collections are impeded by a lack of trained taxonomists and a lack of interest and engagement by the public. We provide a model of a crowd-sourced data collection project that produces quality taxonomic data sets and empowers citizen scientists through real contributions to science. Entitled MicroPlants, the project is a collaboration between taxonomists, citizen science experts, and teachers and students from universities and K-12. METHODS: We developed an online tool that allows citizen scientists to measure photographs of specimens of a hyper-diverse group of liverworts from a biodiversity hotspot. RESULTS: Using the MicroPlants online tool, citizen scientists are generating high-quality data, with preliminary analysis indicating non-expert data can be comparable to expert data. DISCUSSION: More than 11,000 users from both the website and kiosk versions have contributed to the data set, which is demonstrably aiding taxonomists working toward establishing conservation priorities within this group. MicroPlants provides opportunities for public participation in authentic science research. The project's educational component helps move youth toward engaging in scientific thinking and has been adopted by several universities into curriculum for both biology and non-biology majors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...