Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 332: 92-99, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28780372

RESUMO

Neuregulin-1ß is a member of the neuregulin family of growth factors and is critically important for normal development and functioning of the heart and brain. A recombinant version of neuregulin-1ß, cimaglermin alfa (also known as glial growth factor 2 or GGF2) is being investigated as a possible therapy for heart failure. Previous studies suggest that neuregulin-1ß stimulation of skeletal muscle increases glucose uptake and, specifically, sufficient doses of cimaglermin alfa acutely produce hypoglycemia in pigs. Since acute hypoglycemia could be a safety concern, blood glucose changes in the above pig study were further investigated. In addition, basal glucose and glucose disposal were investigated in mice. Finally, as part of standard clinical chemistry profiling in a single ascending-dose human safety study, blood glucose levels were evaluated in patients with heart failure after cimaglermin alfa treatment. A single intravenous injection of cimaglermin alfa at doses of 0.8mg/kg and 2.6mg/kg in mice resulted in a transient reduction of blood glucose concentrations of approximately 20% and 34%, respectively, at 2h after the treatment compared to pre-treatment levels. Similar results were observed in diabetic mice. Treatment with cimaglermin alfa also increased blood glucose disposal following oral challenge in mice. However, no significant alterations in blood glucose concentrations were found in human heart failure patients at 0.5 and 2h after treatment with cimaglermin alfa over an equivalent human dose range, based on body surface area. Taken together, these data indicate strong species differences in blood glucose handling after cimaglermin alfa treatment, and particularly do not indicate that this phenomenon should affect human subjects.


Assuntos
Glicemia/metabolismo , Insuficiência Cardíaca/sangue , Neuregulina-1/farmacologia , Adolescente , Adulto , Idoso , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Relação Dose-Resposta a Droga , Feminino , Humanos , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Animais , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Especificidade da Espécie , Suínos , Adulto Jovem
2.
J Neurosci Methods ; 275: 25-32, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27984099

RESUMO

BACKGROUND: Peripheral nerve injury (PNI) can result in neurodegenerative changes leading to motor, sensory and autonomic dysfunction. Injury to the rat sciatic nerve is used to model pathophysiologic processes following PNI and assess the efficacy of therapeutic interventions. Frequently, temporal changes in the sciatic functional index (SFI), a measure of sensorimotor integration are measured in rats to assess functional recovery following sciatic nerve injury. However, multiple rat strains and behavioral endpoints have been employed to investigate pathophysiology of PNI and impact of therapeutic intervention on recovery, raising the possibility that rat strain may influence the outcome of such studies. NEW METHOD: The temporal course of recovery from sham, sciatic nerve crush or transection injury was assessed using SFI determined by two methods (footprint and DigiGait), and proprioceptive hind limb placement (a measure of proprioceptive integrity) of the sciatic nerve innervation, in male Sprague Dawley, Lewis, Fischer, Wistar and Long Evans rats. RESULTS: The SFI profile, as assessed by both inked footprint analysis and DigiGait, following sciatic nerve injury was remarkably conserved across strains. Dramatic strain-related differences were observed in the latency to place the crush- or transection-injured hind limb following proprioceptive hind limb stimulation. COMPARISON WITH EXISTING METHOD: The novelty of this study is the parallel comparison of multiple strains using existing and novel tests. CONCLUSION: These results suggest that some sensorimotor function tests may be sensitive to the choice of strain, as evidenced by the differences between SFI and proprioceptive function outcomes.


Assuntos
Traumatismos dos Nervos Periféricos/fisiopatologia , Ratos/fisiologia , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/lesões , Animais , Marcha/fisiologia , Membro Posterior/fisiopatologia , Masculino , Atividade Motora/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Tamanho do Órgão , Traumatismos dos Nervos Periféricos/patologia , Propriocepção/fisiologia , Nervo Isquiático/fisiopatologia , Neuropatia Ciática/patologia , Neuropatia Ciática/fisiopatologia , Especificidade da Espécie
3.
Eur J Pharmacol ; 796: 76-89, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27993643

RESUMO

Neuregulins are important growth factors involved in cardiac development and response to stress. Certain isoforms and fragments of neuregulin have been found to be cardioprotective. The effects of a full-length neuregulin-1ß isoform, glial growth factor 2 (GGF2; USAN/INN; also called cimaglermin) were investigated in vitro. Various dosing regimens were then evaluated for their effects on left ventricular (LV) function in rats with surgically-induced myocardial infarction. In vitro, GGF2 bound with high affinity to erythroblastic leukemia viral oncogene (ErbB) 4 receptors, potently promoted Akt phosphorylation, as well as reduced cell death following doxorubicin exposure in HL1 cells. Daily GGF2 treatment beginning 7-14 days after left anterior descending coronary artery ligation produced improvements in LV ejection fraction and other measures of LV function and morphology. The improvements in LV function (e.g. 10% point increase in absolute LV ejection fraction) with GGF2 were dose-dependent. LV performance was substantially improved when GGF2 treatment was delivered infrequently, despite a serum half-life of less than 2h and could be maintained for more than 10 months with treatment once weekly or once every 2 weeks. These studies confirm previous findings that GGF2 may improve contractile performance in the failing rat heart and that infrequent exposure to GGF2 may improve LV function and impact remodeling in the failing myocardium. GGF2 is now being developed for the treatment of heart failure in humans.


Assuntos
Ventrículos do Coração/efeitos dos fármacos , Infarto do Miocárdio/fisiopatologia , Neuregulina-1/farmacologia , Disfunção Ventricular/tratamento farmacológico , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Citoproteção/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Esquema de Medicação , Insuficiência Cardíaca/complicações , Humanos , Camundongos , Infarto do Miocárdio/complicações , Neuregulina-1/administração & dosagem , Neuregulina-1/química , Neuregulina-1/metabolismo , Ratos , Receptor ErbB-4/metabolismo
4.
J Neurotrauma ; 34(3): 685-694, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27503053

RESUMO

Magnesium (Mg2+) homeostasis is impaired following spinal cord injury (SCI) and the loss of extracellular Mg2+ contributes to secondary injury by various mechanisms, including glutamate neurotoxicity. The neuroprotective effects of high dose Mg2+ supplementation have been reported in many animal models. Recent studies found that lower Mg2+ doses also improved neurologic outcomes when Mg2+ was formulated with polyethylene glycol (PEG), suggesting that a PEG/ Mg2+ formulation might increase Mg2+ delivery to the injured spinal cord, compared with that of MgSO4 alone. Here, we assessed spinal extracellular Mg2+ and glutamate levels following SCI in rats using microdialysis. Basal levels of extracellular Mg2+ (∼0.5 mM) were significantly reduced to 0.15 mM in the core and 0.12 mM in the rostral peri-lesion area after SCI. A single intravenous infusion of saline or of MgSO4 at 192 µmoL/kg did not significantly change extracellular Mg2+ concentrations. However, a single infusion of AC105 (a MgCl2 in PEG) at an equimolar Mg2+ dose significantly increased the Mg2+ concentration to 0.3 mM (core area) and 0.25 mM (rostral peri-lesion area). Moreover, multiple AC105 treatments completely restored the depleted extracellular Mg2+ concentrations after SCI to levels in the uninjured spinal cord. Repeated MgSO4 infusions slightly increased the Mg2+ concentrations while saline infusion had no effect. In addition, AC105 treatment significantly reduced extracellular glutamate levels in the lesion center after SCI. These results indicate that intravenous infusion of PEG-formulated Mg2+ normalized the Mg2+ homeostasis following SCI and reduced potentially neurotoxic glutamate levels, consistent with a neuroprotective mechanism of blocking excitotoxicity.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Líquido Extracelular/metabolismo , Ácido Glutâmico/metabolismo , Sulfato de Magnésio/administração & dosagem , Polietilenoglicóis/administração & dosagem , Traumatismos da Medula Espinal/metabolismo , Animais , Agonistas de Aminoácidos Excitatórios , Líquido Extracelular/efeitos dos fármacos , Feminino , Infusões Intravenosas , Sulfato de Magnésio/metabolismo , Microdiálise/métodos , Polietilenoglicóis/metabolismo , Ratos , Ratos Long-Evans , Traumatismos da Medula Espinal/tratamento farmacológico , Vértebras Torácicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...