Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 439, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064140

RESUMO

Humans and ecosystems are deeply connected to, and through, the hydrological cycle. However, impacts of hydrological change on social and ecological systems are infrequently evaluated together at the global scale. Here, we focus on the potential for social and ecological impacts from freshwater stress and storage loss. We find basins with existing freshwater stress are drying (losing storage) disproportionately, exacerbating the challenges facing the water stressed versus non-stressed basins of the world. We map the global gradient in social-ecological vulnerability to freshwater stress and storage loss and identify hotspot basins for prioritization (n = 168). These most-vulnerable basins encompass over 1.5 billion people, 17% of global food crop production, 13% of global gross domestic product, and hundreds of significant wetlands. There are thus substantial social and ecological benefits to reducing vulnerability in hotspot basins, which can be achieved through hydro-diplomacy, social adaptive capacity building, and integrated water resources management practices.

2.
Nat Commun ; 12(1): 7154, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887399

RESUMO

Sub-daily and weekly flow cycles termed 'hydropeaking' are common features in regulated rivers worldwide. Weekly flow periodicity arises from fluctuating electricity demand and production tied to socioeconomic activity, typically with higher consumption during weekdays followed by reductions on weekends. Here, we propose a weekly hydropeaking index to quantify the 1920-2019 intensity and prevalence of weekly hydropeaking cycles at 500 sites across the United States of America and Canada. A robust weekly hydropeaking signal exists at 1.8% of sites starting in 1920, peaking at 18.9% in 1963, and diminishing to 3.1% in 2019, marking a 21st century decline in weekly hydropeaking intensity. We propose this decline may be tied to recent, above-average precipitation, socioeconomic shifts, alternative energy production, and legislative and policy changes impacting water management in regulated systems. Vanishing weekly hydropeaking cycles may offset some of the prior deleterious ecohydrological impacts from hydropeaking in highly regulated rivers.

3.
Ambio ; 48(3): 251-263, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29981010

RESUMO

Food, energy, and water (FEW) are interdependent and must be examined as a coupled natural-human system. This perspective essay defines FEW systems and outlines key findings about them as a blueprint for future models to satisfy six key objectives. The first three focus on linking the FEW production and consumption to impacts on Earth cycles in a spatially specific manner in order to diagnose problems and identify potential solutions. The second three focus on describing the evolution of FEW systems to identify risks, thus empowering the FEW actors to better achieve the goals of resilience and sustainability. Four key findings about the FEW systems that guide future model development are (1) that they engage ecological, carbon, water, and nutrient cycles most powerfully among all human systems; (2) that they operate primarily at a mesoscale best captured by counties, districts, and cities; (3) that cities are hubs within the FEW system; and (4) that the FEW system forms a complex network.


Assuntos
Ecologia , Água , Cidades , Tomada de Decisões , Alimentos , Humanos
4.
Data Brief ; 12: 203-207, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28459091

RESUMO

Efficient strategies for preparing communities to protect against, respond to, recover from, and mitigate flood hazard are often hampered by the lack of information about the position and extent of flood-prone areas. Hydrologic and hydraulic analyses allow to obtain detailed flood hazard maps, but are a computationally intensive exercise requiring a significant amount of input data, which are rarely available both in developing and developed countries. As a consequence, even in data-rich environments, official flood hazard graduations are often affected by extensive gaps. In the U.S., for instance, the detailed floodplain delineation produced by the Federal Emergency Management Agency (FEMA) is incomplete, with many counties having no floodplain mapping at all. In this article we present a mapping dataset containing 100-year flood susceptibility maps for the continental U.S. with a 90 m resolution. They have been obtained performing a linear binary classification based on the Geomorphic Flood Index (GFI). To the best knowledge of the authors, there are no available flood-prone areas maps for the entire continental U.S. with resolution lower that 30׳׳×30׳׳ (approximatively 1 km at the equator).

5.
Proc Natl Acad Sci U S A ; 112(28): 8561-6, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124137

RESUMO

The High Plains, Mississippi Embayment, and Central Valley aquifer systems within the United States are currently being overexploited for irrigation water supplies. The unsustainable use of groundwater resources in all three aquifer systems intensified from 2000 to 2008, making it imperative that we understand the consumptive processes and forces of demand that are driving their depletion. To this end, we quantify and track agricultural virtual groundwater transfers from these overexploited aquifer systems to their final destination. Specifically, we determine which US metropolitan areas, US states, and international export destinations are currently the largest consumers of these critical aquifers. We draw upon US government data on agricultural production, irrigation, and domestic food flows, as well as modeled estimates of agricultural virtual water contents to quantify domestic transfers. Additionally, we use US port-level trade data to trace international exports from these aquifers. In 2007, virtual groundwater transfers from the High Plains, Mississippi Embayment, and Central Valley aquifer systems totaled 17.93 km(3), 9.18 km(3), and 6.81 km(3), respectively, which is comparable to the capacity of Lake Mead (35.7 km(3)), the largest surface reservoir in the United States. The vast majority (91%) of virtual groundwater transfers remains within the United States. Importantly, the cereals produced by these overexploited aquifers are critical to US food security (contributing 18.5% to domestic cereal supply). Notably, Japan relies upon cereals produced by these overexploited aquifers for 9.2% of its domestic cereal supply. These results highlight the need to understand the teleconnections between distant food demands and local agricultural water use.


Assuntos
Água Subterrânea , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...