Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-491196

RESUMO

Long COVID or post-acute sequelae of SARS-CoV-2 (PASC) is a clinical syndrome featuring diverse symptoms that can persist for months after acute SARS-CoV-2 infection. The etiologies are unknown but may include persistent inflammation, unresolved tissue damage, or delayed clearance of viral protein or RNA. Attempts to classify subsets of PASC by symptoms alone have been unsuccessful. To molecularly define PASC, we evaluated the serum proteome in longitudinal samples from 55 PASC individuals with symptoms lasting [≥]60 days after onset of acute infection and compared this to symptomatically recovered SARS-CoV-2 infected and uninfected individuals. We identified subsets of PASC with distinct signatures of persistent inflammation. Type II interferon signaling and canonical NF-{kappa}B signaling (particularly associated with TNF), were the most differentially enriched pathways. These findings help to resolve the heterogeneity of PASC, identify patients with molecular evidence of persistent inflammation, and highlight dominant pathways that may have diagnostic or therapeutic relevance. One Sentence SummarySerum proteome profiling identifies subsets of long COVID patients with evidence of persistent inflammation including key immune signaling pathways that may be amenable to therapeutic intervention.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-485509

RESUMO

Phage Immunoprecipitation-Sequencing (PhIP-Seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-Seq for autoantigen discovery, including our previous work (Vazquez et al. 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls. Here, we develop and validate a high throughput extension of PhIP-seq in various etiologies of autoimmune and inflammatory diseases, including APS1, IPEX, RAG1/2 deficiency, Kawasaki Disease (KD), Multisystem Inflammatory Syndrome in Children (MIS-C), and finally, mild and severe forms of COVID19. We demonstrate that these scaled datasets enable machine-learning approaches that result in robust prediction of disease status, as well as the ability to detect both known and novel autoantigens, such as PDYN in APS1 patients, and intestinally expressed proteins BEST4 and BTNL8 in IPEX patients. Remarkably, BEST4 antibodies were also found in 2 patients with RAG1/2 deficiency, one of whom had very early onset IBD. Scaled PhIP-Seq examination of both MIS-C and KD demonstrated rare, overlapping antigens, including CGNL1, as well as several strongly enriched putative pneumonia-associated antigens in severe COVID19, including the endosomal protein EEA1. Together, scaled PhIP-Seq provides a valuable tool for broadly assessing both rare and common autoantigen overlap between autoimmune diseases of varying origins and etiologies.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-442666

RESUMO

SARS-CoV-2 has infected over 200 million and caused more than 4 million deaths to date. Most individuals (>80%) have mild symptoms and recover in the outpatient setting, but detailed studies of immune responses have focused primarily on moderate to severe COVID-19. We deeply profiled the longitudinal immune response in individuals with mild COVID-19 beginning with early time points post-infection (1-15 days) and proceeding through convalescence to >100 days after symptom onset. We correlated data from single cell analyses of peripheral blood cells, serum proteomics, virus-specific cellular and humoral immune responses, and clinical metadata. Acute infection was characterized by vigorous coordinated innate and adaptive immune activation that differed in character by age (young vs. old). We then characterized signals associated with recovery and convalescence to define and validate a new signature of inflammatory cytokines, gene expression, and chromatin accessibility that persists in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...