Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 47(13): 4554-4559, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29513345

RESUMO

We present the synthesis and crystal structure of a new chlorinated non-IPR isomer of C76 fullerene, 18387C76Cl30. The new chloride is formed from IPR-D2-C76via a sequence of chlorination-promoted Stone-Wales rearrangements concurrently with the previously known non-IPR compound 18917C76Cl24. A considerable difference between the two simultaneously forming non-IPR compounds suggests that higher fullerenes can exhibit a much higher versatility of skeletal transformations than the presently known compounds. Our theoretical analysis identifies yet further favorable Stone-Wales pathways in C76 and predicts several stable non-IPR and non-classical (i.e. heptagon-containing) C76 chlorides that may await experimental isolation.

2.
Dalton Trans ; 46(13): 4430-4434, 2017 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-28304020

RESUMO

Ionic liquids that are stable toward oxidation and nitration and are based on the 1-n-butyl-3-methylimidazolium cation (BMIm+) can be used as solvents and reaction media for copper dissolution in liquid dinitrogen tetraoxide N2O4. The ionic liquid not only favors the dissociation of N2O4 into NO+ and NO3-, but also takes part in the formation of different crystalline products. Thus, NO[BF4], NO[Cu(NO3)3] and (BMIm)2[Cu2(CF3COO)6] were prepared using (BMIm)A, A- = [BF4]-, (CF3SO2)2N-, CF3COO-, respectively. The formation of a certain product is determined by the nature of the anion A- and the relative solubility of the reaction products in the ionic liquid. Crystals of NO[BF4] were also prepared directly from a mixture of N2O4 and BMImBF4. According to XRD single-crystal structure analysis, the structure of NO[BF4] consists of tetrahedral [BF4]- anions and nitrosonium NO+ cations; the formation of these ions prove the heterolytic dissociation of N2O4 dissolved in the ionic liquid. The crystal structure of the earlier unknown binuclear copper trifluoroacetate (BMIm)2[Cu2(CF3COO)6] were determined by X-ray diffraction. The peculiarity of this dimer compared to the majority of known dimeric copper(ii) carboxylates is the unusually long CuCu distance (3.15 Å), with Cu(ii) ions demonstrating an atypical coordination of a distorted trigonal bipyramid formed by five O atoms of five trifluoroacetate groups.

3.
Dalton Trans ; 44(29): 13272-81, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26126969

RESUMO

The nanoscaled ternary transition-metal fluorides Li3MF6 (M = V, Fe, Mn) and Li2NiF4 are promising candidates for cathode materials in high-voltage lithium-ion batteries. The fluorolytic route to these compounds relies on thermal decomposition of a hitherto uncharacterised precursor mixture produced from acetylacetonates and hydrofluoric acid. By addition of pyridine, different cationic, electroneutral and anionic complexes containing the motifs [MFn]((3-n)+) (n = 0-4) have been trapped and characterised by single-crystal X-ray diffraction and IR spectroscopy. Based on the results, a model of successive and incomplete fluorination is proposed for the speciation and formation of the precursor. The decomposition of the latter has been monitored via thermogravimetry (TG) and differential scanning calorimetry (DSC).

4.
Dalton Trans ; 40(34): 8701-10, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21785780

RESUMO

This study reports three new crystalline aluminum isopropoxide oxide fluorides with molar ratios of Al:F equal to 1:1 and 1:1.25. These are the first three representatives isolated without the incorporation of external donor molecules. Compound 1 Al(4)F(4)(µ(4)-O)(µ-O(i)Pr)(5)[H(O(i)Pr)(2)] contains a tetranuclear unit consisting of two different five fold coordinated AlFO(4)-units, with F exclusively in the terminal position. Compound 2, Al(4)F(4)(µ(4)-O)(µ-O(i)Pr)(5)[H(O(i)Pr)(2)]·Al(5)F(5)(µ(5)-O)(µ-O(i)Pr)(8), contains both a tetranuclear unit (as in 1) and a pentanuclear Al-unit. Al-atoms in the latter are five- and six fold coordinated. Compound 3, Al(16)F(20)(µ(4)-O)(4)(µ-O(i)Pr)(20)·2((i)PrOH), exhibits a slightly higher fluorination degree and contains an oligomeric chain of four F-linked tetranuclear Al-units. In addition to X-ray structure analysis, compound 1 was characterized by different solid state MAS NMR techniques, including (27)Al triple quantum MAS NMR and (1)H, (1)H→(13)C CP, (19)F and (27)Al MAS NMR. On the basis of the collected data, a reliable decomposition of (27)Al single pulse MAS NMR spectra and an unambiguous assignment of the resonances to the respective structural AlFO(4)-units are given. The new crystalline aluminum isopropoxide oxide fluorides are direct evidence of the fluorolytic sol-gel mechanism previously discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA