Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0290485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722959

RESUMO

Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.


Assuntos
Caderinas , Proteólise , Ubiquitina-Proteína Ligases , Humanos , Junções Aderentes/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Caderinas/metabolismo , Adesão Celular , Células HEK293 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
2.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496678

RESUMO

Cadherins are transmembrane adhesion receptors. Cadherin ectodomains form adhesive 2D clusters through cooperative trans and cis interactions, whereas its intracellular region interacts with specific cytosolic proteins, termed catenins, to anchor the cadherin-catenin complex (CCC) to the actin cytoskeleton. How these two types of interactions are coordinated in the formation of specialized cell-cell adhesions, adherens junctions (AJ), remains unclear. We focus here on the role of the actin-binding domain of α-catenin (αABD) by showing that the interaction of αABD with actin generates actin-bound CCC oligomers (CCC/actin strands) incorporating up to six CCCs. The strands are primarily formed on the actin-rich cell protrusions. Once in cell-cell interface, the strands become involved in cadherin ectodomain clustering. Such combination of the extracellular and intracellular oligomerizations gives rise to the composite oligomers, trans CCC/actin clusters. To mature, these clusters then rearrange their actin filaments using several redundant pathways, two of which are characterized here: one depends on the α-catenin-associated protein, vinculin and the second one depends on the unstructured C-terminus of αABD. Thus, AJ assembly proceeds through spontaneous formation of trans CCC/actin clusters and their successive reorganization.

3.
bioRxiv ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37609155

RESUMO

Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.

4.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298410

RESUMO

Plakophilin-3 is a ubiquitously expressed protein found widely in epithelial cells and is a critical component of desmosomes. The plakophilin-3 carboxy-terminal domain harbors nine armadillo repeat motifs with largely unknown functions. Here, we report the 5 Å cryogenic electron microscopy (cryoEM) structure of the armadillo repeat motif domain of plakophilin-3, one of the smaller cryoEM structures reported to date. We find that this domain is a monomer or homodimer in solution. In addition, using an in vitro actin co-sedimentation assay, we show that the armadillo repeat domain of plakophilin-3 directly interacts with F-actin. This feature, through direct interactions with actin filaments, could be responsible for the observed association of extra-desmosomal plakophilin-3 with the actin cytoskeleton directly attached to the adherens junctions in A431 epithelial cells. Further, we demonstrate, through lipid binding analyses, that plakophilin-3 can effectively be recruited to the plasma membrane through phosphatidylinositol-4,5-bisphosphate-mediated interactions. Collectively, we report on novel properties of plakophilin-3, which may be conserved throughout the plakophilin protein family and may be behind the roles of these proteins in cell-cell adhesion.


Assuntos
Actinas , Placofilinas , Citoesqueleto de Actina , Actinas/metabolismo , Desmossomos/metabolismo , Placofilinas/metabolismo
5.
Trends Cell Biol ; 33(5): 374-387, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36127186

RESUMO

The cell-cell connections in adherens junctions (AJs) are mediated by transmembrane receptors, type I cadherins (referred to here as cadherins). These cadherin-based connections (or trans bonds) are weak. To upregulate their strength, cadherins exploit avidity, the increased affinity of binding between cadherin clusters compared with isolated monomers. Formation of such clusters is a unique molecular process that is driven by a synergy of direct and indirect cis interactions between cadherins located at the same cell. In addition to their role in adhesion, cadherin clusters provide structural scaffolds for cytosolic proteins, which implicate cadherin into different cellular activities and signaling pathways. The cluster lifetime, which depends on the actin cytoskeleton, and on the mechanical forces it generates, determines the strength of AJs and their plasticity. The key aspects of cadherin adhesion, therefore, cannot be understood at the level of isolated cadherin molecules, but should be discussed in the context of cadherin clusters.


Assuntos
Caderinas , Moléculas de Adesão Celular , Humanos , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Junções Aderentes/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Adesão Celular/fisiologia
6.
J Biol Chem ; 297(5): 101289, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634305

RESUMO

Scribble, a member of the LAP protein family, contributes to the apicobasal polarity (ABP) of epithelial cells. The LAP-unique region of these proteins, which is essential and sufficient for ABP, includes a conserved Leucine-Rich Repeat (LRR) domain. The major binding partners of this region that could regulate ABP remain unknown. Here, using proteomics, native gel electrophoresis, and site-directed mutagenesis, we show that the concave surface of LRR domain in Scribble participates in three types of mutually exclusive interactions-(i) homodimerization, serving as an auto-inhibitory mechanism; (ii) interactions with a diverse set of polarity proteins, such as Llgl1, Llgl2, EPB41L2, and EPB41L5, which produce distinct multiprotein complexes; and (iii) a direct interaction with the protein phosphatase, PP1. Analogy with the complex between PP1 and LRR domain of SDS22, a well-studied PP1 regulator, suggests that the Scibble-PP1 complex stores a latent form of PP1 in the basolateral cell cortex. Such organization may generate a dynamic signaling network wherein PP1 could be dispatched from the complex with Scribble to particular protein ligands, achieving fast dephosphorylation kinetics.


Assuntos
Polaridade Celular , Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Multimerização Proteica , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Ligação Proteica , Domínios Proteicos , Receptores de Neuropeptídeo Y/química , Receptores de Neuropeptídeo Y/genética , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
7.
Mol Biol Cell ; 32(19): 1824-1837, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34260281

RESUMO

Desmosomes (DSMs), together with adherens junctions (AJs) and tight junctions (TJs), constitute the apical cell junctional complex (AJC). While the importance of the apical and basolateral polarity machinery in the organization of AJs and TJs is well established, how DSMs are positioned within the AJC is not understood. Here we use highly polarized DLD1 cells as a model to address how DSMs integrate into the AJC. We found that knockout (KO) of the desmosomal ARM protein Pkp3, but not other major DSM proteins, uncouples DSMs from the AJC without blocking DSM assembly. DLD1 cells also exhibit a prominent extraDSM pool of Pkp3, concentrated in tricellular (tC) contacts. Probing distinct apicobasal polarity pathways revealed that neither the DSM's association with AJC nor the extraDSM pool of Pkp3 are abolished in cells with defects in Scrib module proteins responsible for basolateral membrane development. However, a loss of the apical polarity protein, Par3, completely eliminates the extraDSM pool of Pkp3 and disrupts AJC localization of desmosomes, dispersing these junctions along the entire length of cell-cell contacts. Our data are consistent with a model whereby Par3 facilitates DSM assembly within the AJC, controlling the availability of an assembly competent pool of Pkp3 stored in tC contacts.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Proteínas de Ciclo Celular/metabolismo , Desmossomos/metabolismo , Placofilinas/metabolismo , Junções Íntimas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Junções Aderentes/genética , Animais , Células CACO-2 , Comunicação Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Polaridade Celular/genética , Células Cultivadas , Desmossomos/genética , Cães , Células Epiteliais/metabolismo , Técnicas de Inativação de Genes , Humanos , Células Madin Darby de Rim Canino , Microscopia de Fluorescência/métodos , Placofilinas/genética , Junções Íntimas/genética
8.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34272290

RESUMO

The cytoplasmic tails of classical cadherins form a multiprotein cadherin-catenin complex (CCC) that constitutes the major structural unit of adherens junctions (AJs). The CCC in AJs forms junctional clusters, "E clusters," driven by cis and trans interactions in the cadherin ectodomain and stabilized by α-catenin-actin interactions. Additional proteins are known to bind to the cytoplasmic region of the CCC. Here, we analyze how these CCC-associated proteins (CAPs) integrate into cadherin clusters and how they affect the clustering process. Using a cross-linking approach coupled with mass spectrometry, we found that the majority of CAPs, including the force-sensing protein vinculin, interact with CCCs outside of AJs. Accordingly, structural modeling shows that there is not enough space for CAPs the size of vinculin to integrate into E clusters. Using two CAPs, scribble and erbin, as examples, we provide evidence that these proteins form separate clusters, which we term "C clusters." As proof of principle, we show, by using cadherin ectodomain monoclonal antibodies (mAbs), that mAb-bound E-cadherin forms separate clusters that undergo trans interactions. Taken together, our data suggest that, in addition to its role in cell-cell adhesion, CAP-driven CCC clustering serves to organize cytoplasmic proteins into distinct domains that may synchronize signaling networks of neighboring cells within tissues.


Assuntos
Caderinas/metabolismo , Cateninas/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Anticorpos Monoclonais/metabolismo , Adesão Celular , Linhagem Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutação/genética , Ligação Proteica , Transporte Proteico , Proteínas Supressoras de Tumor/metabolismo
9.
Cell Rep ; 30(8): 2820-2833.e3, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101754

RESUMO

We study punctate adherens junctions (pAJs) to determine how short-lived cadherin clusters and relatively stable actin bundles interact despite differences in dynamics. We show that pAJ-linked bundles consist of two distinct regions-the bundle stalk (AJ-BS) and a tip (AJ-BT) positioned between cadherin clusters and the stalk. The tip differs from the stalk in a number of ways: it is devoid of the actin-bundling protein calponin, and exhibits a much faster F-actin turnover rate. While F-actin in the stalk displays centripetal movement, the F-actin in the tip is immobile. The F-actin turnover in both the tip and stalk is dependent on cadherin cluster stability, which in turn is regulated by F-actin. The close bidirectional coupling between the stability of cadherin and associated F-actin shows how pAJs, and perhaps other AJs, allow cells to sense and coordinate the dynamics of the actin cytoskeleton in neighboring cells-a mechanism we term "dynasensing."


Assuntos
Actinas/metabolismo , Junções Aderentes/metabolismo , Citoesqueleto de Actina/metabolismo , Caderinas/metabolismo , Linhagem Celular , Humanos , Proteínas dos Microfilamentos/metabolismo , Modelos Biológicos , Frações Subcelulares/metabolismo
10.
J Cell Sci ; 132(16)2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31331966

RESUMO

Here, we show that cells expressing the adherens junction protein nectin-1 capture nectin-4-containing membranes from the surface of adjacent cells in a trans-endocytosis process. We find that internalized nectin-1-nectin-4 complexes follow the endocytic pathway. The nectin-1 cytoplasmic tail controls transfer: its deletion prevents trans-endocytosis, while its exchange with the nectin-4 tail reverses transfer direction. Nectin-1-expressing cells acquire dye-labeled cytoplasmic proteins synchronously with nectin-4, a process most active during cell adhesion. Some cytoplasmic cargo remains functional after transfer, as demonstrated with encapsidated genomes of measles virus (MeV). This virus uses nectin-4, but not nectin-1, as a receptor. Epithelial cells expressing nectin-4, but not those expressing another MeV receptor in its place, can transfer infection to nectin-1-expressing primary neurons. Thus, this newly discovered process can move cytoplasmic cargo, including infectious material, from epithelial cells to neurons. We name the process nectin-elicited cytoplasm transfer (NECT). NECT-related trans-endocytosis processes may be exploited by pathogens to extend tropism. This article has an associated First Person interview with the first author of the paper.


Assuntos
Moléculas de Adesão Celular/metabolismo , Endocitose , Células Epiteliais/metabolismo , Vírus do Sarampo/metabolismo , Nectinas/metabolismo , Internalização do Vírus , Transporte Biológico Ativo/genética , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Linhagem Celular , Humanos , Vírus do Sarampo/genética , Nectinas/genética
11.
J Cell Biol ; 218(7): 2277-2293, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31147384

RESUMO

The basolateral protein Scribble (Scrib), a member of the LAP protein family, is essential for epithelial apicobasal polarity (ABP) in Drosophila However, a conserved function for this protein in mammals is unclear. Here we show that the crucial role for Scrib in ABP has remained obscure due to the compensatory function of two other LAP proteins, Erbin and Lano. A combined Scrib/Erbin/Lano knockout disorganizes the cell-cell junctions and the cytoskeleton. It also results in mislocalization of several apical (Par6, aPKC, and Pals1) and basolateral (Llgl1 and Llgl2) identity proteins. These defects can be rescued by the conserved "LU" region of these LAP proteins. Structure-function analysis of this region determined that the so-called LAPSDb domain is essential for basolateral targeting of these proteins, while the LAPSDa domain is essential for supporting the membrane basolateral identity and binding to Llgl. In contrast to the key role in Drosophila, mislocalization of Llgl proteins does not appear to be critical in the scrib ABP phenotype.


Assuntos
Adesão Celular/genética , Polaridade Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Membrana/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Transporte/genética , Membrana Celular/genética , Células Epiteliais/metabolismo , Edição de Genes , Humanos , Junções Intercelulares/genética , Relação Estrutura-Atividade
12.
Proc Natl Acad Sci U S A ; 115(19): E4406-E4415, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29691319

RESUMO

Adherens junctions (AJs) play a fundamental role in tissue integrity; however, the organization and dynamics of the key AJ transmembrane protein, E-cadherin, both inside and outside of AJs, remain controversial. Here we have studied the distribution and motility of E-cadherin in punctate AJs (pAJs) of A431 cells. Using single-molecule localization microscopy, we show that pAJs in these cells reach more than 1 µm in length and consist of several cadherin clusters with crystal-like density interspersed within sparser cadherin regions. Notably, extrajunctional cadherin appears to be monomeric, and its density is almost four orders of magnitude less than observed in the pAJ regions. Two alternative strategies of tracking cadherin motion within individual junctions show that pAJs undergo actin-dependent rapid-on the order of seconds-internal reorganizations, during which dense clusters disassemble and their cadherins are immediately reused for new clusters. Our results thus modify the classical view of AJs by depicting them as mosaics of cadherin clusters, the short lifetimes of which enable stable overall morphology combined with rapid internal rearrangements.


Assuntos
Actinas/metabolismo , Junções Aderentes/metabolismo , Caderinas/metabolismo , Imagem Molecular , Actinas/genética , Junções Aderentes/genética , Caderinas/genética , Linhagem Celular , Humanos
13.
J Cell Biol ; 210(4): 647-61, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26261181

RESUMO

The function of the actin-binding domain of α-catenin, αABD, including its possible role in the direct anchorage of the cadherin-catenin complex to the actin cytoskeleton, has remained uncertain. We identified two point mutations on the αABD surface that interfere with αABD binding to actin and used them to probe the role of α-catenin-actin interactions in adherens junctions. We found that the junctions directly bound to actin via αABD were more dynamic than the junctions bound to actin indirectly through vinculin and that recombinant αABD interacted with cortical actin but not with actin bundles. This interaction resulted in the formation of numerous short-lived cortex-bound αABD clusters. Our data suggest that αABD clustering drives the continuous assembly of transient, actin-associated cadherin-catenin clusters whose disassembly is maintained by actin depolymerization. It appears then that such actin-dependent αABD clustering is a unique molecular mechanism mediating both integrity and reassembly of the cell-cell adhesive interface formed through weak cis- and trans-intercadherin interactions.


Assuntos
Actinas/metabolismo , Caderinas/metabolismo , alfa Catenina/fisiologia , Junções Aderentes/metabolismo , Linhagem Celular Tumoral , Humanos , Cinética , Microscopia de Fluorescência , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Imagem com Lapso de Tempo , Vinculina/metabolismo , alfa Catenina/química
14.
Proc Natl Acad Sci U S A ; 112(35): 10932-7, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26290581

RESUMO

Epithelial (E)-cadherin-mediated cell-cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.


Assuntos
Caderinas/metabolismo , Junções Intercelulares , Biofísica , Linhagem Celular , Citoesqueleto/metabolismo , Humanos , Cinética , Bicamadas Lipídicas , Transdução de Sinais
15.
J Cell Sci ; 128(1): 140-9, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25395582

RESUMO

The mechanism that coordinates activities of different adhesion receptors is poorly understood. We investigated this mechanism by focusing on the nectin-2 and E-cadherin adherens junction receptors. We found that, cadherin was not required for the basic process of nectin junction formation because nectin-2 formed junctions in cadherin-deficient A431D cells. Formation of nectin-2 junctions in these cells, however, became regulated by cadherin as soon as E-cadherin was re-expressed. E-cadherin recruited nectin-2 into adherens junctions, where both proteins formed distinct but tightly associated clusters. Live-cell imaging showed that the appearance of E-cadherin clusters often preceded that of nectin-2 clusters at sites of junction assembly. Inactivation of E-cadherin clustering by different strategies concomitantly suppressed the formation of nectin clusters. Furthermore, cadherin significantly increased the stability of nectin clusters, thereby making them resistant to the BC-12 antibody, which targets the nectin-2 adhesion interface. By testing different E-cadherin-α-catenin chimeras, we showed that the recruitment of nectin into chimera junctions is mediated by the actin-binding domain of α-catenin. Our data suggests that E-cadherin regulates assembly of nectin junctions through α-catenin-induced remodeling of the actin cytoskeleton around the cadherin clusters.


Assuntos
Citoesqueleto de Actina/metabolismo , Junções Aderentes/metabolismo , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Citoesqueleto de Actina/genética , Junções Aderentes/genética , Moléculas de Adesão Celular/genética , Linhagem Celular , Humanos , Nectinas , Proteínas Recombinantes de Fusão/metabolismo , alfa Catenina/genética , alfa Catenina/metabolismo
16.
Tissue Barriers ; 2: e28687, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25045601

RESUMO

Afadin is an actin-binding protein that interacts with the intracellular region of the transmembrane proteins, nectins. In collaboration with other transmembrane proteins, cadherins, nectins form adherens junctions, a major type of cell-cell adhesive structures in the multicellular organisms. To elucidate the afadin function, we studied adherens junction defects induced by afadin depletion in epithelial A431 cells. We have found that the cells lacking afadin exhibit no abnormalities in morphology or in general dynamics of adherens junctions in the confluent cell cultures. The only observed difference is a slight increase in the rate of cadherin turnover in these junctions. However, afadin depletion strongly affects the assembly of new adherens junctions immediately after two cells touch one another: initiation of new junctions is significantly delayed, the growth of the nascent junctions stagnates, and their lifetime shortens. As a result, the afadin-depleted cells need much more time to establish the mature junctional structures. This defect is not caused by the clathrin-dependent endocytosis of cadherin clusters that was monitored using live-cell imaging of A431 cells co-expressing GFP-tagged E-cadherin and mCherry-tagged clathrin light chain. Taken together our data show that afadin reinforces adherens junctions and that this process is crucial for the fast formation of adherens junctions at the sites of new cell-cell contacts.

17.
J Cell Biol ; 201(1): 131-43, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23547031

RESUMO

The cadherin extracellular region produces intercellular adhesion clusters through trans- and cis-intercadherin bonds, and the intracellular region connects these clusters to the cytoskeleton. To elucidate the interdependence of these binding events, cadherin adhesion was reconstructed from the minimal number of structural elements. F-actin-uncoupled adhesive clusters displayed high instability and random motion. Their assembly required a cadherin cis-binding interface. Coupling these clusters with F-actin through an α-catenin actin-binding domain (αABD) dramatically extended cluster lifetime and conferred direction to cluster motility. In addition, αABD partially lifted the requirement for the cis-interface for cluster assembly. Even more dramatic enhancement of cadherin clustering was observed if αABD was joined with cadherin through a flexible linker or if it was replaced with an actin-binding domain of utrophin. These data present direct evidence that binding to F-actin stabilizes cadherin clusters and cooperates with the cis-interface in cadherin clustering. Such cooperation apparently synchronizes extracellular and intracellular binding events in the process of adherens junction assembly.


Assuntos
Actinas/metabolismo , Junções Aderentes/metabolismo , Caderinas/metabolismo , Actinas/genética , Junções Aderentes/genética , Caderinas/genética , Linhagem Celular , Humanos , Estabilidade Proteica , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Utrofina/genética , Utrofina/metabolismo
18.
Nat Struct Mol Biol ; 19(9): 906-15, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22902367

RESUMO

Nectins are immunoglobulin superfamily glycoproteins that mediate intercellular adhesion in many vertebrate tissues. Homophilic and heterophilic interactions between nectin family members help mediate tissue patterning. We determined the homophilic binding affinities and heterophilic specificities of all four nectins and the related protein nectin-like 5 (Necl-5) from human and mouse, revealing a range of homophilic interaction strengths and a defined heterophilic specificity pattern. To understand the molecular basis of their adhesion and specificity, we determined the crystal structures of natively glycosylated full ectodomains or adhesive fragments of all four nectins and Necl-5. All of the crystal structures revealed dimeric nectins bound through a stereotyped interface that was previously proposed to represent a cis dimer. However, conservation of this interface and the results of targeted cross-linking experiments showed that this dimer probably represents the adhesive trans interaction. The structure of the dimer provides a simple molecular explanation for the adhesive binding specificity of nectins.


Assuntos
Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Virais/metabolismo , Animais , Adesão Celular , Linhagem Celular , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Nectinas , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
19.
Mol Biol Cell ; 22(22): 4247-55, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21937720

RESUMO

Cadherin-catenin interactions play an important role in cadherin-mediated adhesion. Here we present strong evidence that in the cadherin-catenin complex α-catenin contributes to the binding strength of another catenin, p120, to the same complex. Specifically, we found that a ß-catenin-uncoupled cadherin mutant interacts much more weakly with p120 than its full-size counterpart and that it is rapidly endocytosed from the surface of A-431 cells. We also showed that p120 overexpression stabilizes this mutant on the cell surface. Examination of the α-catenin-deficient MDA-MB-468 cells and their derivates in which α-catenin was reintroduced showed that α-catenin reinforces E-cadherin-p120 association. Finally, a cross-linking analysis of the cadherin-catenin complex indicated that a large loop located in the middle of the p120 arm-repeat domain is in close spatial vicinity to the amino-terminal VH1 domain of α-catenin. The six amino acid-long extension of this loop, caused by an alternative splicing, weakens p120 binding to cadherin. The data suggest that α-catenin-p120 contact within the cadherin-catenin complex can regulate cadherin trafficking.


Assuntos
Caderinas/metabolismo , Cateninas/metabolismo , alfa Catenina/metabolismo , beta Catenina/metabolismo , Cateninas/biossíntese , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Mutação , Ligação Proteica , Transporte Proteico , Transdução de Sinais , alfa Catenina/deficiência , beta Catenina/genética , delta Catenina
20.
Mol Vis ; 17: 2177-90, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21866211

RESUMO

PURPOSE: We have previously identified specific epithelial proteins with altered expression in human diabetic central corneas. Decreased hepatocyte growth factor receptor (c-met) and increased proteinases were functionally implicated in the changes of these proteins in diabetes. The present study examined whether limbal stem cell marker patterns were altered in diabetic corneas and whether c-met gene overexpression could normalize these patterns. METHODS: Cryostat sections of 28 ex vivo and 26 organ-cultured autopsy human normal and diabetic corneas were examined by immunohistochemistry using antibodies to putative limbal stem cell markers including ATP-binding cassette sub-family G member 2 (ABCG2), N-cadherin, ΔNp63α, tenascin-C, laminin γ3 chain, keratins (K) K15, K17, K19, ß(1) integrin, vimentin, frizzled 7, and fibronectin. Organ-cultured diabetic corneas were studied upon transduction with adenovirus harboring c-met gene. RESULTS: Immunostaining for ABCG2, N-cadherin, ΔNp63α, K15, K17, K19, and ß(1) integrin, was significantly decreased in the stem cell-harboring diabetic limbal basal epithelium either by intensity or the number of positive cells. Basement membrane components, laminin γ3 chain, and fibronectin (but not tenascin-C) also showed a significant reduction in the ex vivo diabetic limbus. c-Met gene transduction, which normalizes diabetic marker expression and epithelial wound healing, was accompanied by increased limbal epithelial staining for K17, K19, ΔNp63α, and a diabetic marker α(3)ß(1) integrin, compared to vector-transduced corneas. CONCLUSIONS: The data suggest that limbal stem cell compartment is altered in long-term diabetes. Gene therapy, such as with c-met overexpression, could be able to restore normal function to diabetic corneal epithelial stem cells.


Assuntos
Diabetes Mellitus , Epitélio Corneano/metabolismo , Proteínas do Olho/metabolismo , Expressão Gênica , Terapia Genética/métodos , Limbo da Córnea/metabolismo , Proteínas Proto-Oncogênicas c-met , Células-Tronco/metabolismo , Adenoviridae/genética , Adolescente , Idoso , Idoso de 80 Anos ou mais , Autopsia , Membrana Basal/citologia , Membrana Basal/metabolismo , Biomarcadores/análise , Células Cultivadas , Criança , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Diabetes Mellitus/terapia , Epitélio Corneano/patologia , Proteínas do Olho/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Limbo da Córnea/patologia , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Células-Tronco/citologia , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...