Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38063715

RESUMO

This study was carried out in order to assess several modifications of carbon nanotube-based nanomaterials for their applications in laccase electrodes and model biofuel cells. The modified MWCNTs served as adapters for the immobilization of laccase from Catenuloplanes japonicus VKM Ac-875 on the surface of electrodes made of graphite rods and graphite paste. The electrochemical properties of the electrodes were tested in linear and cyclic voltammetrical measurements for the determination of the redox potential of the enzyme and achievable current densities. The redox potential of the enzyme was above 500 mV versus NHE, while the highest current densities reached hundreds of µA/cm2. Model biofuel cells on the base of the laccase cathodes had maximal power values from 0.4 to 2 µW. The possibility of practical application of such BFCs was discussed.

2.
Biochemistry (Mosc) ; 88(10): 1658-1667, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105031

RESUMO

The gene for a previously unexplored two-domain laccase was identified in the genome of actinobacterium Streptomyces carpinensis VKM Ac-1300. The two-domain laccase, named ScaSL, was produced in a heterologous expression system (Escherichia coli strain M15 [pREP4]). The enzyme was purified to homogeneity using affinity chromatography. ScaSL laccase, like most two-domain laccases, exhibited activity in the homotrimer form. However, unlike the most two-domain laccases, it was also active in multimeric forms. The enzyme exhibited maximum activity at 80°C and was thermally stable. Half-inactivation time of ScaSL at 80°C was 40 min. The laccase was able to oxidize a non-phenolic organic compound ABTS at a maximum rate at pH 4.7, and to oxidized a phenolic compound 2,6-dimethoxyphenol at a maximum rate at pH 7.5. The laccase stability was observed in the pH range 9-11. At pH 7.5, laccase was slightly inhibited by sodium azide, sodium fluoride, and sodium chloride; at pH 4.5, the laccase was completely inhibited by 100 mM sodium azide. The determined Km and kcat of the enzyme for ABTS were 0.1 mM and 20 s-1, respectively. The Km and kcat for 2,6-dimethoxyphenol were 0.84 mM and 0.36 s-1, respectively. ScaSL catalyzed polymerization of humic acids and lignin. Redox potential of the laccase was 0.472 ± 0.007 V. Thus, the ScaSL laccase is the first characterized two-domain laccase with a middle redox potential. Crystal structure of ScaSL was determined with 2.35 Å resolution. Comparative analysis of the structures of ScaSL and other two-domain laccases suggested that the middle potential of ScaSL may be associated with conformational differences in the position of the side groups of amino acids at position 230 (in ScaSL numbering), which belong to the second coordination sphere of the copper atom of the T1 center.


Assuntos
Lacase , Lacase/metabolismo , Azida Sódica , Oxirredução , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Cinética
3.
Biochemistry (Mosc) ; 87(7): 617-627, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36154882

RESUMO

Cellulophaga lytica is a Gram-negative aerobic bacterium in the genome of which there are many genes encoding polysaccharide degrading enzymes. One of the enzymes named ClGP contains a glycoside hydrolase domain from the GH5 family and a polysaccharide lyase domain from the PL31 family. The enzyme also contains the TAT signaling peptide and the TIGR04183 domain that indicates extracellular nature of the enzyme. Phylogenetic analysis has shown that the enzymes most closely related to ClGP and containing all four domains (TAT, GH5, PL31, TIGR04183) are widespread among bacterial species belonging to the Flavobacteriaceae family. ClGP produced by the recombinant strain of E. coli was purified and characterized. ClGP exhibited activity of endoglucanase (EC 3.2.1.4) and catalyzed hydrolysis of ß-D-glucan, carboxymethyl cellulose sodium salt (CMC-Na), and amorphous cellulose, but failed to hydrolyze microcrystalline cellulose and xylan. Products of CMC hydrolysis were cellobiose and cellotriose, whereas ß-D-glucan was hydrolyzed to glucose, cellobiose, cellotetraose, and cellopentaose. ClGP was more active against the poly-ß-D-mannuronate blocks than against the poly-α-L-glucuronate blocks of alginic acid. This indicates that the enzyme is a polyM lyase (EC 4.2.2.3). ClGP was active against polyglucuronic acid, so it displayed a glucuronan lyase (EC 4.2.2.14) activity. The enzyme had a neutral pH-optimum, was stable in the pH range 6.0-8.0, and displayed moderate thermal stability. ClGP effectively saccharified two species of brown algae, Saccharina latissima and Laminaria digitata, that suggests its potential for use in the production of biofuel from macroalgae.


Assuntos
Celulase , Flavobacteriaceae , Ácido Algínico , Biocombustíveis , Carboximetilcelulose Sódica , Celobiose , Celulase/metabolismo , Celulose , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Flavobacteriaceae/metabolismo , Glucanos , Glucose , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Enzimas Multifuncionais/genética , Peptídeos , Filogenia , Polissacarídeo-Liases/genética , Sódio , Especificidade por Substrato , Xilanos
4.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142248

RESUMO

(Ca2+)-dependent pyrroloquinolinequinone (PQQ)-dependent methanol dehydrogenase (MDH) (EC: 1.1.2.7) is one of the key enzymes of primary C1-compound metabolism in methylotrophy. PQQ-MDH is a promising catalyst for electrochemical biosensors and biofuel cells. However, the large-scale use of PQQ-MDH in bioelectrocatalysis is not possible due to the low yield of the native enzyme. Homologously overexpressed MDH was obtained from methylotrophic bacterium Methylorubrum extorquens AM1 by cloning the gene of only one subunit, mxaF. The His-tagged enzyme was easily purified by immobilized metal ion affinity chromatography (36% yield). A multimeric form (α6ß6) of recombinant PQQ-MDH possessing enzymatic activity (0.54 U/mg) and high stability was demonstrated for the first time. pH-optimum of the purified protein was about 9-10; the enzyme was activated by ammonium ions. It had the highest affinity toward methanol (KM = 0.36 mM). The recombinant MDH was used for the fabrication of an amperometric biosensor. Its linear range for methanol concentrations was 0.002-0.1 mM, the detection limit was 0.7 µM. The properties of the invented biosensor are competitive to the analogs, meaning that this enzyme is a promising catalyst for industrial methanol biosensors. The developed simplified technology for PQQ-MDH production opens up new opportunities for the development of bioelectrocatalytic systems.


Assuntos
Compostos de Amônio , Methylobacterium extorquens , Oxirredutases do Álcool/metabolismo , Íons , Metanol/metabolismo , Methylobacterium extorquens/genética
5.
PeerJ ; 9: e11646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221729

RESUMO

BACKGROUND: Two-domain laccases are copper-containing oxidases found in bacteria in the beginning of 2000ths. Two-domain laccases are known for their thermal stability, wide substrate specificity and, the most important of all, their resistance to so-called «strong inhibitors¼ of classical fungal laccases (azides, fluorides). Low redox potential was found to be specific for all the two-domain laccases, due to which these enzymes lost the researchers' interest as potentially applicable for various biotechnological purposes, such as bioremediation. Searching, obtaining and studying the properties of novel two-domain laccases will help to obtain an enzyme with high redox-potential allowing its practical application. METHODS: A gene encoding two-domain laccase was identified in Catenuloplanes japonicus genome, cloned and expressed in an Echerichia coli strain. The protein was purified to homogeneity by immobilized metal ion affinity chromatography. Its molecular properties were studied using electrophoresis in native and denaturing conditions. Physico-chemical properties, kinetic characteristics, substrate specificity and decolorization ability of laccase towards triphenylmethane dyes were measured spectrophotometrically. RESULTS: A novel two-domain recombinant laccase CjSL appeared to be a multimer with a subunit molecular mass of 37 kDa. It oxidized a wide range of phenolic substrates (ferulic acid, caffeic acid, hydroquinone, catechol, etc.) at alkaline pH, while oxidizing of non phenolic substrates (K4[Fe(CN)6], ABTS) was optimal at acidic pH. The UV-visible absorption spectrum of the purified enzyme was specific for all two-domain laccases with peak of absorption at 600 nm and shoulder at 340 nm. The pH optima of CjSL for oxidation of ABTS and 2, 6-DMP substrates were 3.6 and 9.2 respectively. The temperature optimum was 70 °C. The enzyme was most stable in neutral-alkaline conditions. CjSL retained 53% activity after pre-incubation at 90 °C for 60 min. The enzyme retained 26% activity even after 60 min of boiling. The effects of NaF, NaN3, NaCl, EDTA and 1,10-phenanthroline on enzymatic activity were investigated. Only 1,10-phenanthroline reduced laccase activity under both acidic and alkaline conditions. Laccase was able to decolorize triphenylmethane dyes and azo-dyes. ABTS and syringaldehyde were effective mediators for decolorization. The efficacy of dye decolorization depended on pH of the reaction medium.

6.
PLoS One ; 15(9): e0239005, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32946485

RESUMO

The two-domain bacterial laccases oxidize substrates at alkaline pH. The role of natural phenolic compounds in the oxidation of substrates by the enzyme is poorly understood. We have studied the role of ferulic and caffeic acids in the transformation of low molecular weight substrates and of soil humic acid (HA) by two-domain laccase of Streptomyces puniceus (SpSL, previously undescribed). A gene encoding a two-domain laccase was cloned from S. puniceus and over-expressed in Escherichia coli. The recombinant protein was purified by affinity chromatography to an electrophoretically homogeneous state. The enzyme showed high thermal stability, alkaline pH optimum for the oxidation of phenolic substrates and an acidic pH optimum for the oxidation of K4[Fe(CN)6] (potassium ferrocyanide) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt). Phenolic compounds were oxidized with lower efficiency than K4[Fe(CN)6] and ABTS. The SpSL did not oxidize 3.4-dimethoxybenzoic alcohol and p-hydroxybenzoic acid neither in the absence of phenolic acids nor in their presence. The enzyme polymerized HA-the amount of its high molecular weight fraction (>80 kDa) increased at the expense of low MW fraction (10 kDa). The addition of phenolic acids as potential mediators did not cause the destruction of HA by SpSL. In the absence of the HA, the enzyme polymerized caffeic and ferulic acids to macromolecular fractions (>80 kDa and 10-12 kDa). The interaction of SpSL with HA in the presence of phenolic acids caused an increase in the amount of HA high MW fraction and a two-fold increase in the molecular weight of its low MW fraction (from 10 to 20 kDa), suggesting a cross-coupling reaction. Infrared and solution-state 1H-NMR spectroscopy revealed an increase in the aromaticity of HA after its interaction with phenolic acids. The results of the study expand our knowledge on the transformation of natural substrates by two-domain bacterial laccases and indicate a potentially important role of the enzyme in the formation of soil organic matter (SOM) at alkaline pH values.


Assuntos
Lacase/metabolismo , Solo/química , Streptomyces/metabolismo , Ácidos Cafeicos/metabolismo , Clonagem Molecular/métodos , Ácidos Cumáricos/metabolismo , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Oxirredução , Proteínas Recombinantes/genética , Microbiologia do Solo , Streptomyces/genética , Especificidade por Substrato/genética
7.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 9): 1200-4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26323308

RESUMO

Laccase (EC 1.10.3.2) is one of the most common copper-containing oxidases; it is found in many organisms and catalyzes the oxidation of primarily phenolic compounds by oxygen. Two-domain laccases have unusual thermostability, resistance to inhibitors and an alkaline optimum of activity. The causes of these properties in two-domain laccases are poorly understood. A recombinant two-domain laccase (SgfSL) was cloned from the genome of Streptomyces griseoflavus Ac-993, expressed in Escherichia coli and purified to homogeneity. The crystals of SgfSL belonged to the monoclinic space group P21, with unit-cell parameters a = 74.64, b = 94.72, c = 117.40 Å, ß = 90.672°, and diffraction data were collected to 2.0 Šresolution using a synchrotron-radiation source. Two functional trimers per asymmetric unit correspond to a Matthews coefficient of 1.99 Å(3) Da(-1) according to the monomer molecular weight of 35.6 kDa.


Assuntos
Lacase/química , Streptomyces/enzimologia , Sequência de Aminoácidos , Cristalização , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Espectrofotometria Ultravioleta , Eletricidade Estática , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...