Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Vis ; 23: 103-115, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28356703

RESUMO

PURPOSE: Tissue culture is traditionally performed at atmospheric oxygen concentration (21%), which induces hyperoxic stress, as endogenous physiologic oxygen tension found in tissues varies between 2% and 9%. This discrepancy may lead to misinterpretation of results and may explain why effects observed in vitro cannot always be reproduced in vivo and vice versa. Only a few studies have been conducted in low physiologic oxygen conditions to understand the development and differentiation of cells from the eye. METHODS: The aim of this study was to investigate the growth and gene expression profile of melanocytes from the choroid permanently exposed to 21% (hyperoxic) or 3% (physiologic) oxygen with proliferation assays and DNA microarray. The cellular behavior of the melanocytes was then compared to that of cancer cells. RESULTS: The gross morphology and melanin content of choroidal melanocytes changed slightly when they were exposed to 3% O2, and the doubling time was statistically significantly faster. There was an increase in the percentage of choroidal melanocytes in the active phases of the cell cycle as observed by using the proliferation marker Ki67. The caveolin-1 senescence marker was not increased in choroidal melanocytes or uveal melanoma cells grown in hyperoxia. In comparison, the morphology of the uveal melanoma cells was similar between the two oxygen levels, and the doubling time was slower at 3% O2. Surprisingly, gene expression profiling of the choroidal melanocytes did not reveal a large list of transcripts considerably dysregulated between the two oxygen concentrations; only the lactate transporter monocarboxylate transporter (MCT4) was statistically significantly upregulated at 3% O2. CONCLUSIONS: This study showed that the oxygen concentration must be tightly controlled in experimental settings, because it influences the subsequent cellular behavior of human choroidal melanocytes.


Assuntos
Corioide/patologia , Melanócitos/patologia , Melanoma/patologia , Oxigênio/farmacologia , Neoplasias Uveais/patologia , Idoso de 80 Anos ou mais , Contagem de Células , Tamanho do Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Corioide/efeitos dos fármacos , Corioide/metabolismo , Humanos , Ácido Láctico/metabolismo , Melaninas/biossíntese , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Pessoa de Meia-Idade , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...