Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(18): 5415-5428, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37421154

RESUMO

The extent to which future climate change will increase forest stress and the amount to which species and forest ecosystems can acclimate or adapt to increased stress is a major unknown. We used high-resolution maps of hydraulic traits representing the diversity in tree drought tolerance across the United States, a hydraulically enabled tree model, and forest inventory observations of demographic shifts to quantify the ability for within-species acclimation and between-species range shifts to mediate climate stress. We found that forests are likely to experience increases in both acute and chronic hydraulic stress with climate change. Based on current species distributions, regional hydraulic trait diversity was sufficient to buffer against increased stress in 88% of forested areas. However, observed trait velocities in 81% of forested areas are not keeping up with the rate required to ameliorate projected future stress without leaf area acclimation.


Assuntos
Mudança Climática , Ecossistema , Estados Unidos , Florestas , Resistência à Seca , Aclimatação , Folhas de Planta , Secas
2.
Ecol Lett ; 21(10): 1552-1560, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30125446

RESUMO

The mechanisms governing tree drought mortality and recovery remain a subject of inquiry and active debate given their role in the terrestrial carbon cycle and their concomitant impact on climate change. Counter-intuitively, many trees do not die during the drought itself. Indeed, observations globally have documented that trees often grow for several years after drought before mortality. A combination of meta-analysis and tree physiological models demonstrate that optimal carbon allocation after drought explains observed patterns of delayed tree mortality and provides a predictive recovery framework. Specifically, post-drought, trees attempt to repair water transport tissue and achieve positive carbon balance through regrowing drought-damaged xylem. Furthermore, the number of years of xylem regrowth required to recover function increases with tree size, explaining why drought mortality increases with size. These results indicate that tree resilience to drought-kill may increase in the future, provided that CO2 fertilisation facilitates more rapid xylem regrowth.


Assuntos
Secas , Árvores , Carbono , Florestas , Árvores/fisiologia , Água , Xilema
3.
J Acoust Soc Am ; 127(2): 741-5, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20136196

RESUMO

Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline (239)Pu in the gamma-phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease in all elastic moduli with increasing temperature was observed. The Poisson ratio was calculated and an increase from 0.242 at 519 K to 0.252 at 571 K was found. These measurements on extremely well-characterized pure Pu are in agreement with other reported results where overlap occurs. We calculated an approximate Debye temperature Theta(D)=144 K. Determined from the temperature variation in the bulk modulus, gamma-Pu shows the same Gruneisen parameter as copper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...