Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 2): 131599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626840

RESUMO

Phycocyanin (PC), a protein derived from algae, is non-toxic and biocompatible. Due to its environmental and sustainable properties, it has been studied as an alternative stabilizer for food emulsions. In this sense, the main objective of this work is to evaluate the effectiveness of PC and its use in combination with diutan gum (DG), a biological macromolecule, to prepare emulgels formulated with avocado oil. Z-potential measurements show that the optimum pH for working with PC is 2.5. Furthermore, the system exhibited a structured interface at this pH. The surface tension did not decrease further above 1.5 wt% PC. Interestingly, emulsions formulated with >1.5 wt% PC showed recoalescence immediately after preparation. Although 1.5 wt% had the smallest droplet size, this emulsion underwent creaming due to the low viscosity of the system. DG was used in combination with PC to increase viscosity and reduce creaming. As little as 0.1 wt% DG was sufficient to form an emulgel when incorporated into the previous emulsion, which exhibited pseudoplastic behaviour and viscoelastic properties with very low creaming rates. However, the use of PC in combination with DG resulted in a non-aggregated and stable emulgel with 1.5 wt% PC and 0.1 wt% DG.


Assuntos
Materiais Biocompatíveis , Emulsões , Ficocianina , Ficocianina/química , Emulsões/química , Viscosidade , Materiais Biocompatíveis/química , Géis/química , Concentração de Íons de Hidrogênio , Sistemas de Liberação de Medicamentos , Gomas Vegetais/química , Reologia , Tensão Superficial
2.
Polymers (Basel) ; 16(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38256993

RESUMO

Phycocyanin (PC), a natural protein that is very interesting from the medical point of view due to its potent antioxidant and anti-inflammatory properties, is obtained from algae. This compound is gaining positions for applications in the food industry. The main objective of this work was to obtain nanoemulgels formulated with PC and k-carrageenan (a polymer that is obtained from algae as well). An optimization of the processing parameters (homogenization pressure and number of cycles) and the ratio of PC and a well-known synthetic surfactant (Tween 80) was developed using response surface methodology. The results of this optimization were 25,000 psi, seven cycles, and a 1:1 ratio of PC/Tween80. However, the necessity for the incorporation of a polymer that plays a thickener role was observed. Hence, k-carrageenan (k-C) was used to retard the creaming process that these nanoemulsions suffered. The incorporation of this biopolymer provoked the creation of a network that showed gel-type behavior and flow indexes very close to zero. Thanks to the combined use of these two sustainable and algae-obtained compounds, stable nanoemulgels were obtained. This work has proved that the combined use of PC and k-C has emerged as a sustainable alternative to stabilize dispersed systems for the food industry.

3.
Pharmaceutics ; 15(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37631281

RESUMO

Phycocyanin (PC), a natural product obtained from algae, is attracting attention due to its health benefits, such as its antioxidant and anti-inflammatory properties. This work studies the use of PC as the main stabilizer in avocado and lemon oil emulgels, a format for drug delivery. The influence of PC concentration on droplet size distribution, rheological properties, and physical stability is studied using a laser diffraction technique, rheological measurements, and multiple light scattering. The 5 wt.% PC emulsions show the lowest droplet size and, consequently, the best stability against creaming and droplet growth. Emulsions formulated with PC as the only stabilizer show a slight pseudoplastic character with an apparent viscosity below 10 mPa·s at 2 Pa. This indicates that these emulsions undergo creaming with aging time. In order to reduce creaming, pectin is incorporated into the 5 wt.% PC emulsion at different concentrations. Interestingly, yield stress and an incipient gel character are observed due to the presence of pectin. This is why the creaming mechanism is reduced. In conclusion, PC forms a layer that protects the interface against coalescence and Ostwald ripening. And, pectin is incorporated to reduce creaming. This research has the potential to make valuable contributions to diverse fields, such as health, medicine, and encapsulation technology.

4.
Polymers (Basel) ; 14(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36365632

RESUMO

Many lipophilic active substances, such as ß-carotene, are sensitive to chemical oxidation. A strategy to protect these ingredients is encapsulation using nanoemulsions. This work analyzes the relationship between the physical stability and encapsulation efficiency of nanoemulsions based on linseed oil. The role of two different polysaccharides, Advanced Performance xanthan gum (APXG) or guar gum (GG) as stabilizers at different concentrations were studied to reach the required physical stability of these systems. This was investigated by means of droplet size distributions, steady-state flow curves, small amplitude oscillatory shear tests, multiple light scattering, and electronic microscopy. The overall results obtained reveal a depletion flocculation mechanism in all the APXG nanoemulsions, regardless of the concentration, and above 0.3 wt.% for GG nanoemulsions. Moreover, it has been demonstrated that enhanced physical stability is directly related to higher values of encapsulation efficiency. Thus, the nanoemulsion formulated with 0.2 wt.% GG, which presented the lowest creaming degree conditioned by depletion flocculation, showed a relative ß-carotene concentration even above 80% at 21 days of aging time. In conclusion, the adequate selection of polysaccharide type and its concentration is a key point for the application of stable nanoemulsions as vehicles for active ingredients.

5.
J Sci Food Agric ; 102(5): 2127-2134, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34605029

RESUMO

BACKGROUND: Zein as a sole material is not suitable for technological applications since it is not flexible. A possible solution to extend the applications of zein is the formation of zein-polysaccharide complexes. As a first step, sonication parameters were optimized to obtain finer emulsions formulated with zein, rosemary essential oil as food preservative, and sunflower oil, by means of response surface methodology. After the formation of these guar- or diutan-zein complexes the rheological properties of these food emulsions were evaluated. RESULTS: An increase in sonication power, sonication time and cycles provoked a decrease in mean droplet size and a lack of recoalescence. The optimized emulsion was the starting point to form two different complexes: zein with diutan gum and zein with guar gum at different concentrations. Rheological properties as well as the microstructure observed by field emission scanning electron microscopy (FESEM) were analyzed. Interestingly, zein-guar gum complexes did not form a rheological gel; as a consequence, emulsions containing them seem to undergo a destabilization process with aging time. In contrast, emulsions formulated with zein-diutan gum presented a 3D network, observed by FESEM technique and proved by rheological measurements. CONCLUSION: While emulsions containing zein-guar gum complexes did not form networks to stabilize oil droplets, zein-diutan gum complexes did. This work brings to light the importance of the selection of polysaccharide used in food emulsions formulated with zein. © 2021 Society of Chemical Industry.


Assuntos
Conservação de Alimentos , Zeína , Emulsões/química , Conservação de Alimentos/métodos , Galactanos , Mananas , Gomas Vegetais/química , Sonicação , Zeína/química
6.
Materials (Basel) ; 14(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279265

RESUMO

Microfluidization is a preparation method that can be used to obtain emulsions with submicron droplet sizes. The first objective of this study was to evaluate the influence of homogenization pressure and cycles on droplet sizes using response surface methodology. Secondly, the influence of the diutan gum concentration incorporated in the optimized emulsion on rheological properties, microstructure, and physical stability was investigated. Taking the response surface analysis into account, the emulsion processed at 20,000 psi after four cycles seemed to show the smallest Sauter diameter values. Hence, this emulsion was the starting point to incorporate diutan gum. Interestingly, the formation of a 3D network in the emulsion, observed by FESEM, was provoked by diutan gum. The emulsion formulated with 0.4 wt.% of diutan gum presented rheological gel properties and enhanced physical stability. This work highlights the importance of selecting optimized processing variables using the microfluidization technique and extends the knowledge of using diutan gum in combination with zein.

7.
J Sci Food Agric ; 100(4): 1671-1677, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31802496

RESUMO

BACKGROUND: White thyme essential oil, which can be incorporated in clean-label and food emulsion-based products, is a natural antimicrobial agent. However, emulsions containing essential oils commonly undergo Ostwald ripening as the main destabilization process. The main objective of this work was to evaluate various strategies for the inhibition of Ostwald ripening so as to develop stable nanoemulsions containing white thyme essential oil as food preservative and Kolliphor EL as surfactant. RESULTS: In a first approach, the influence of the surfactant/dispersed phase ratio and the number of cycles through a microfluidizer on droplet size distribution was evaluated. Unfortunately, these emulsions underwent Ostwald ripening, which was demonstrated by the application of the Lifshitz-Slyozov-Wagner theory. In order to reduce this destabilization mechanism, two different techniques based on the modification of the formulation (addition of rosin gum or Aerosil COK84) were analysed using laser diffraction and multiple light scattering techniques. The addition of rosin gum inhibited the Ostwald ripening mechanism, but only partially. Conversely, the incorporation of Aerosil COK84 to the continuous phase led to a gel-like rheological behaviour which seemed to practically avoid Ostwald ripening. CONCLUSIONS: Aerosil particles cover the droplets and form a three-dimensional network suggesting a Pickering stabilization, which was confirmed using transmission electronic microscopy. The results confirmed the role of Aerosil COK84, not only as a thickener or gelling agent, but also as an Ostwald ripening inhibitor. © 2019 Society of Chemical Industry.


Assuntos
Óleos Voláteis/química , Óleos de Plantas/química , Thymus (Planta)/química , Emulsões/química , Reologia , Tensoativos/química
8.
Int J Biol Macromol ; 129: 326-332, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30721747

RESUMO

In this work, a current application of rhamsan gum, a biological macromolecule which belongs to the sphingans group, as an efficient stabilizer of emulsions and emulgels is investigated. The main objective of this investigation was 1) to study the influence of glycerol and sweet fennel oil concentration on microfluidized emulsion properties; and 2) to develop stable emulgels stabilized with rhamsan gum. The emulsions and emulgels were characterized by droplet size, rheological properties, physical stability and microstructure. An analysis by surface response methodology of the results obtained revealed that essential oil concentration was the most determining factor affecting emulsion mean droplet sizes and rheological properties. An optimal emulsion with minimum d4,3 was obtained for the sample formulated with 10 wt% sweet fennel oil and 0 wt% glycerol. However, all of these emulsions suffered destabilization by creaming. The results of the rheological characterization of emulsions formulated with the biological macromolecule showed that the addition of 0.2 wt% of rhamsan gum allows an emulgel with enhanced physical stability to be obtained. Thus, we provide valuable information concerning the use of rhamsan gum as emulsion stabilizer and the development of stable emulsions and emulgels for use in the food industry.


Assuntos
Alphaproteobacteria/química , Géis , Óleos Voláteis , Polissacarídeos Bacterianos , Algoritmos , Emulsões , Géis/química , Modelos Teóricos , Óleos Voláteis/química , Polissacarídeos Bacterianos/química , Reologia , Análise Espectral
9.
Colloids Surf B Biointerfaces ; 128: 127-131, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25734966

RESUMO

d-Limonene is a natural occurring solvent that can replace more pollutant chemicals in agrochemical formulations. In the present work, a comprehensive study of the influence of dispersed phase mass fraction, ϕ, and of the surfactant/oil ratio, R, on the emulsion stability and droplet size distribution of d-limonene-in-water emulsions stabilized by a non-ionic triblock copolymer surfactant has been carried out. An experimental full factorial design 3(2) was conducted in order to optimize the emulsion formulation. The independent variables, ϕ and R were studied in the range 10-50 wt% and 0.02-0.1, respectively. The emulsions studied were mainly destabilized by both creaming and Ostwald ripening. Therefore, initial droplet size and an overall destabilization parameter, the so-called turbiscan stability index, were used as dependent variables. The optimal formulation, comprising minimum droplet size and maximum stability was achieved at ϕ=50 wt%; R=0.062. Furthermore, the surface response methodology allowed us to obtain the formulation yielding sub-micron emulsions by using a single step rotor/stator homogenizer process instead of most commonly used two-step emulsification methods. In addition, the optimal formulation was further improved against Ostwald ripening by adding silicone oil to the dispersed phase. The combination of these experimental findings allowed us to gain a deeper insight into the stability of these emulsions, which can be applied to the rational development of new formulations with potential application in agrochemical formulations.


Assuntos
Cicloexenos/química , Polietilenos/química , Polipropilenos/química , Solventes/química , Tensoativos/química , Terpenos/química , Água/química , Agroquímicos , Emulsões , Análise Fatorial , Química Verde , Limoneno , Tamanho da Partícula , Óleos de Silicone/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...