Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540791

RESUMO

In order to evaluate the role of substituents at 3-C and 17-C in the cytotoxic and cytoprotective actions of DHEA and 5-AED molecules, their derivatives were synthesized by esterification using the corresponding acid anhydrides or acid chlorides. As a result, seven compounds were obtained: four DHEA derivatives (DHEA 3-propionate, DHEA 3-butanoate, DHEA 3-acetate, DHEA 3-methylsulfonate) and three 5-AED derivatives (5-AED 3-butanoate, 5-AED 3,17-dipropionate, 5-AED 3,17-dibutanoate). All of these compounds showed micromolar cytotoxic activity toward HeLa and K562 human cancer cells. The maximum cytostatic effect during long-term incubation for five days with HeLa and K562 cells was demonstrated by the propionic esters of the steroids: DHEA 3-propionate and 5-AED 3,17-dipropionate. These compounds stimulated the growth of normal Wi-38 cells by 30-50%, which indicates their cytoprotective properties toward noncancerous cells. The synthesized steroid derivatives exhibited antioxidant activity by reducing the production of reactive oxygen species (ROS) by peripheral blood mononuclear cells from healthy volunteers, as demonstrated in a luminol-stimulated chemiluminescence assay. The highest antioxidant effects were shown for the propionate ester of the steroid DHEA. DHEA 3-propionate inhibited luminol-stimulated chemiluminescence by 73% compared to the control, DHEA, which inhibited it only by 15%. These data show the promise of propionic substituents at 3-C and 17-C in steroid molecules for the creation of immunostimulatory and cytoprotective substances with antioxidant properties.


Assuntos
Androstenodiol , Desidroepiandrosterona , Humanos , Desidroepiandrosterona/farmacologia , Luminol , Leucócitos Mononucleares , Voluntários Saudáveis , Células K562 , Luminescência , Propionatos , Esteroides
2.
Biomedicines ; 11(11)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38002032

RESUMO

Dipeptidyl peptidase 4 (DPP4) inhibitors, commonly known as gliptins, have been an integral part of the treatment of type 2 diabetes mellitus (T2DM) for several years. Despite their remarkable efficacy in lowering glucose levels and their compatibility with other hypoglycemic drugs, recent studies have revealed adverse effects, prompting the search for improved drugs within this category, which has required the use of animal models to verify the hypoglycemic effects of these compounds. Currently, in many countries the use of mammals is being significantly restricted, as well as cost prohibitive, and alternative in vivo approaches have been encouraged. In this sense, Drosophila has emerged as a promising alternative for several compelling reasons: it is cost-effective, offers high experimental throughput, is genetically manipulable, and allows the assessment of multigenerational effects, among other advantages. In this study, we present evidence that diprotin A, a DPP4 inhibitor, effectively reduces glucose levels in Drosophila hemolymph. This discovery underscores the potential of Drosophila as an initial screening tool for novel compounds directed against DPP4 enzymatic activity.

3.
Front Endocrinol (Lausanne) ; 13: 1028114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339443

RESUMO

Previous studies have reported that dual drug combinations consisting of γ-aminobutyric acid (GABA) together with a dipeptidyl-peptidase-4 inhibitor (DPP-4i), also a DPP-4i with a proton pump inhibitor (PPI), could improve pancreatic ß-cell function and ameliorate diabetes in diabetic mice. In this study, we sought to determine if a triple drug combination of GABA, a DPP-4i and a PPI might have superior therapeutic effects compared with double drug therapies in the prevention and reversal of diabetes in the non-obese diabetic (NOD) mouse model of human type 1 diabetes (T1D). In a diabetes prevention arm of the study, the triple drug combination of GABA, a DPP-4i, and a PPI exhibited superior therapeutic effects in preventing the onset of diabetes compared with all the double drug combinations and placebo. Also, the triple drug combination significantly increased circulating C-peptide and serum insulin levels in the mice. In a diabetes reversal arm of the study, the triple drug combination was superior to all of the double drug combinations in reducing hyperglycemia in the mice. In addition, the triple drug combination was the most effective in increasing circulating levels of C-peptide and serum insulin, thereby significantly reducing exogenous insulin needs. The combination of GABA, a DPP-4i and a PPI appears to be a promising and easily scalable therapy for the treatment and prevention of T1D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Inibidores da Dipeptidil Peptidase IV , Animais , Camundongos , Peptídeo C , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ácido gama-Aminobutírico/uso terapêutico , Hipoglicemiantes/uso terapêutico , Camundongos Endogâmicos NOD , Omeprazol/uso terapêutico , Inibidores da Bomba de Prótons/uso terapêutico , Fosfato de Sitagliptina/uso terapêutico
4.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35337071

RESUMO

Compounds that contain (R)-3-amino-4-(2,4,5-trifluorophenyl)butanoic acid substituted with bicyclic amino moiety (2-aza-bicyclo[2.2.1]heptane) were designed using molecular modelling methods, synthesised, and found to be potent DPP-4 (dipeptidyl peptidase-4) inhibitors. Compound 12a (IC50 = 16.8 ± 2.2 nM), named neogliptin, is a more potent DPP-4 inhibitor than vildagliptin and sitagliptin. Neogliptin interacts with key DPP-4 residues in the active site and has pharmacophore parameters similar to vildagliptin and sitagliptin. It was found to have a low cardiotoxic effect compared to sitagliptin, and it is superior to vildagliptin in terms of ADME properties. Moreover, compound 12a is stable in aqueous solutions due to its low intramolecular cyclisation potential. These findings suggest that compound 12a has unique properties and can act as a template for further type 2 diabetes mellitus drug development.

5.
Front Pharmacol ; 12: 807548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126141

RESUMO

Type 2 diabetes mellitus (T2DM) continues to be a substantial medical problem due to its increasing global prevalence and because chronic hyperglycemic states are closely linked with obesity, liver disease and several cardiovascular diseases. Since the early discovery of insulin, numerous antihyperglycemic drug therapies to treat diabetes have been approved, and also discontinued, by the United States Food and Drug Administration (FDA). To provide an up-to-date account of the current trends of antidiabetic pharmaceuticals, this review offers a comprehensive analysis of the main classes of antihyperglycemic compounds and their mechanisms: insulin types, biguanides, sulfonylureas, meglitinides (glinides), alpha-glucosidase inhibitors (AGIs), thiazolidinediones (TZD), incretin-dependent therapies, sodium-glucose cotransporter type 2 (SGLT2) inhibitors and combinations thereof. The number of therapeutic alternatives to treat T2DM are increasing and now there are nearly 60 drugs approved by the FDA. Beyond this there are nearly 100 additional antidiabetic agents being evaluated in clinical trials. In addition to the standard treatments of insulin therapy and metformin, there are new drug combinations, e.g., containing metformin, SGLT2 inhibitors and dipeptidyl peptidase-4 (DPP4) inhibitors, that have gained substantial use during the last decade. Furthermore, there are several interesting alternatives, such as lobeglitazone, efpeglenatide and tirzepatide, in ongoing clinical trials. Modern drugs, such as glucagon-like peptide-1 (GLP-1) receptor agonists, DPP4 inhibitors and SGLT2 inhibitors have gained popularity on the pharmaceutical market, while less expensive over the counter alternatives are increasing in developing economies. The large heterogeneity of T2DM is also creating a push towards more personalized and accessible treatments. We describe several interesting alternatives in ongoing clinical trials, which may help to achieve this in the near future.

6.
Curr Pharm Des ; 26(44): 5700-5712, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33198610

RESUMO

Combinations of different technologies are at the heart of the development and implementation of new, innovative processes and approaches for Industry 4.0 in the field of medicinal chemistry and drug discovery. Process intensification and advances in high-throughput synthetic techniques can dramatically improve reaction rates in processes for which slow kinetics represents a bottleneck. Easier access to target-based chemical library collections offers wider access to new leads for drug development. Green enabling technologies are a reliable ally for the design of environmentally friendly synthetic processes and more highly competitive pharmaceutical production. Mechanochemistry, microwaves, ultrasound and flow chemistry are mature techniques that can boast drug synthesis when properly integrated into the production chain. In this review, we selected examples from the literature of the last five years related to medicinal chemistry.


Assuntos
Chumbo , Preparações Farmacêuticas , Química Farmacêutica , Descoberta de Drogas , Humanos , Bibliotecas de Moléculas Pequenas
8.
BMC Genomics ; 21(1): 331, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349672

RESUMO

BACKGROUND: Salivary cell secretion (SCS) plays a critical role in blood feeding by medicinal leeches, making them of use for certain medical purposes even today. RESULTS: We annotated the Hirudo medicinalis genome and performed RNA-seq on salivary cells isolated from three closely related leech species, H. medicinalis, Hirudo orientalis, and Hirudo verbana. Differential expression analysis verified by proteomics identified salivary cell-specific gene expression, many of which encode previously unknown salivary components. However, the genes encoding known anticoagulants have been found to be expressed not only in salivary cells. The function-related analysis of the unique salivary cell genes enabled an update of the concept of interactions between salivary proteins and components of haemostasis. CONCLUSIONS: Here we report a genome draft of Hirudo medicinalis and describe identification of novel salivary proteins and new homologs of genes encoding known anticoagulants in transcriptomes of three medicinal leech species. Our data provide new insights in genetics of blood-feeding lifestyle in leeches.


Assuntos
Genoma , Hirudo medicinalis/genética , Proteínas e Peptídeos Salivares/genética , Animais , Anticoagulantes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hirudo medicinalis/metabolismo , Sanguessugas/classificação , Sanguessugas/genética , Sanguessugas/metabolismo , Proteômica , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo
9.
Cells ; 8(10)2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615102

RESUMO

In recent years, the introduction of new molecular techniques in experimental and clinical settings has allowed researchers and clinicians to propose circulating-tumor DNA (ctDNA) analysis and liquid biopsy as novel promising strategies for the early diagnosis of cancer and for the definition of patients' prognosis. It was widely demonstrated that through the non-invasive analysis of ctDNA, it is possible to identify and characterize the mutational status of tumors while avoiding invasive diagnostic strategies. Although a number of studies on ctDNA in patients' samples significantly contributed to the improvement of oncology practice, some investigations generated conflicting data about the diagnostic and prognostic significance of ctDNA. Hence, to highlight the relevant achievements obtained so far in this field, a clearer description of the current methodologies used, as well as the obtained results, are strongly needed. On these bases, this review discusses the most relevant studies on ctDNA analysis in cancer, as well as the future directions and applications of liquid biopsy. In particular, special attention was paid to the early diagnosis of primary cancer, to the diagnosis of tumors with an unknown primary location, and finally to the prognosis of cancer patients. Furthermore, the current limitations of ctDNA-based approaches and possible strategies to overcome these limitations are presented.


Assuntos
Ácidos Nucleicos Livres/genética , Neoplasias/diagnóstico , Neoplasias/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA Tumoral Circulante , Humanos , Biópsia Líquida/métodos , Biópsia Líquida/tendências , Células Neoplásicas Circulantes/metabolismo , Prognóstico
10.
Sci Rep ; 5: 7720, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25579120

RESUMO

Room-temperature ferromagnetism in Mn-doped chalcopyrites is a desire aspect when applying those materials to spin electronics. However, dominance of high Curie-temperatures due to cluster formation or inhomogeneities limited their consideration. Here we report how an external perturbation such as applied hydrostatic pressure in CdGeP2:Mn induces a two serial magnetic transitions from ferromagnet to non-magnet state at room temperature. This effect is related to the unconventional properties of created MnP magnetic clusters within the host material. Such behavior is also discussed in connection with ab initio density functional calculations, where the structural properties of MnP indicate magnetic transitions as function of pressure as observed experimentally. Our results point out new ways to obtain controlled response of embedded magnetic clusters.

11.
Dalton Trans ; (3): 492-501, 2006 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-16395449

RESUMO

Reaction of the octadentate ligand 2,6-bis{3-[N,N-di(2-pyridylmethyl)amino]propoxy}benzoic acid (LH) with Fe(ClO4)3 leads to the formation of the tetranuclear complexes [Fe4(mu-O)2(LH)2(ClCH2-CO2)4](ClO4)4 (1), [{Fe2(mu-O)L(R-CO2)}2](ClO4)4 (2 R = C6H5-, 3 R = CH3-, 4, R = ClCH2-). The crystal structures of complexes 1 and 2 reveal that they consist of two Fe(III)2(mu-O)(mu-RCO2)2 cores that are linked via the two LH/L ligands to give a "dimer of dimers" structure. Complex assumes a helical shape, with protonated carboxylic acid moieties of the two ligands forming a hydrogen-bonded pair at the center of the cation. In complexes 2, 3 and 4, central carboxylates of the two ligands bridge the iron ions in each of the two Fe2O units, with an interdimer iron-iron separation of approximately 10 A and an intradimer separation of approximately 3.1 A. The second carboxylate bridge within the Fe2O units is defined by exogenous benzoate (2), acetate (3) or chloroacetate (4) ligands. The aqua complex [{Fe2(mu-O)L(H2O)2}2](ClO4)6 (5) is proposed to have a similar structure, but with the exogenous bridging carboxylates replaced by two terminal water ligands. These complexes exhibit electronic and Mössbauer spectral features that are similar to those of (mu-oxo)diiron(III) proteins as well as other related (mu-oxo)bis(mu-carboxylato)diiron(III) complexes. This similarity shows that these properties are not significantly affected by the nature of the bridging exogenous carboxylate, and that the octadentate framework ligand is essential in stabilizing the "dimer of dimers" structure. This structural feature remains in highly diluted solution (10(-5) M) as evidenced by electrospray ionization mass-spectroscopy (ES MS). Cyclic voltammetric studies of complexes 2 and 5 showed two irreversible two-electron reductions, indicating that the two Fe2O units of the tetranuclear complexes behave as distinct redox entities. Complexes 2, 3 and, especially, the aqua complex 5 are active alkane oxidation catalysts. Catalytic reactions carried out with alkane substrate molecules and hydrogen peroxide predominantly gave alcohols. High stereospecificity in the oxidation of cis-1,2-dimethylcyclohexane supports the metal-based molecular mechanism of O-insertion into C-H bonds postulated for non-heme iron enzymes such as methane monooxygenase.


Assuntos
Alcanos/química , Ácidos Carboxílicos/química , Peróxido de Hidrogênio/química , Ferro/química , Compostos Organometálicos/síntese química , Piridinas/química , Catálise , Cristalografia por Raios X , Enzimas/química , Compostos Férricos/química , Heme/química , Ligantes , Ferroproteínas não Heme/química , Oxirredução , Oxigenases/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...