Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiome ; 19(1): 28, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685092

RESUMO

BACKGROUND: Aerobic anoxygenic phototrophs are metabolically highly active, diverse and widespread polyphyletic members of bacterioplankton whose photoheterotrophic capabilities shifted the paradigm about simplicity of the microbial food chain. Despite their considerable contribution to the transformation of organic matter in marine environments, relatively little is still known about their community structure and ecology at fine-scale taxonomic resolution. Up to date, there is no comprehensive (i.e. qualitative and quantitative) analysis of their community composition in the Adriatic Sea. RESULTS: Analysis was based on pufM gene metabarcoding and quantitative FISH-IR approach with the use of artificial neural network. Significant seasonality was observed with regards to absolute abundances (maximum average abundances in spring 2.136 ± 0.081 × 104 cells mL-1, minimum in summer 0.86 × 104 cells mL-1), FISH-IR groups (Roseobacter clade prevalent in autumn, other Alpha- and Gammaproteobacteria in summer) and pufM sequencing data agglomerated at genus-level. FISH-IR results revealed heterogeneity with the highest average relative contribution of AAPs assigned to Roseobacter clade (37.66%), followed by Gammaproteobacteria (35.25%) and general Alphaproteobacteria (31.15%). Community composition obtained via pufM sequencing was dominated by Gammaproteobacteria clade NOR5/OM60, specifically genus Luminiphilus, with numerous rare genera present in relative abundances below 1%. The use of artificial neural network connected this community to biotic (heterotrophic bacteria, HNA and LNA bacteria, Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic nanoflagellates, bacterial production) and abiotic environmental factors (temperature, salinity, chlorophyll a and nitrate, nitrite, ammonia, total nitrogen, silicate, and orthophosphate concentration). A type of neural network, neural gas analysis at order-, genus- and ASV-level, resulted in five distinct best matching units (representing particular environments) and revealed that high diversity was generally independent of temperature, salinity, and trophic status of the environment, indicating a potentially dissimilar behaviour of aerobic anoxygenic phototrophs compared to the general bacterioplankton. CONCLUSION: This research represents the first comprehensive analysis of aerobic anoxygenic phototrophs in the Adriatic Sea on a trophic gradient during a year-round period. This study is also one of the first reports of their genus-level ecology linked to biotic and abiotic environmental factors revealed by unsupervised neural network algorithm, paving the way for further research of substantial contribution of this important bacterial functional group to marine ecosystems.

2.
Sci Rep ; 13(1): 7617, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165047

RESUMO

By combining qualitative 16S metabarcoding and quantitative CARD-FISH methods with neural gas analysis, different patterns of the picoplankton community were revealed at finer taxonomic levels in response to changing environmental conditions in the Adriatic Sea. We present the results of a one-year study carried out in an oligotrophic environment where increased salinity was recently observed. We have shown that the initial state of community structure changes according to environmental conditions and is expressed as qualitative and quantitative changes. A general pattern of increasing diversity under harsh environmental conditions, particularly under the influence of increasing salinity at the expense of community abundance was observed. Considering the trend of changing seawater characteristics due to climate change, this study helps in understanding a possible structural change in the microbial community of the Adriatic Sea that could affect higher levels of the marine food web.


Assuntos
Salinidade , Água do Mar , Água do Mar/química , Cadeia Alimentar
3.
Front Microbiol ; 14: 1151907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138601

RESUMO

Recent advances in new molecular biology methods and next-generation sequencing (NGS) technologies have revolutionized metabarcoding studies investigating complex microbial communities from various environments. The inevitable first step in sample preparation is DNA extraction which introduces its own set of biases and considerations. In this study, we assessed the influence of five DNA extraction methods [B1: phenol/chloroform/isoamyl extraction, B2 and B3: isopropanol and ethanol precipitations, respectively-both modifications of B1, K1: DNeasy PowerWater Kit (QIAGEN), K2: modified DNeasy PowerWater Kit (QIAGEN) and direct PCR approach (P) that completely circumvents this step on community composition and DNA yield of mock and marine sample communities from the Adriatic Sea]. B1-B3 methods generally produced higher DNA yields and more similar microbial communities, but with higher interindividual variability. Each method demonstrated significant differences in a specific community structure, where rare taxa seem to play a crucial role. There was not one superior method closest to the theoretically expected mock community composition, they all demonstrated skewed ratios, but in a similar way which might be attributed to other factors, such as primer bias or 16S rRNA gene count for specific taxa. Direct PCR represents an interesting approach when high throughput in sample processing is required. We emphasize the importance of making a cautious decision about the choice of the extraction method or direct PCR approach, but even more importantly its consistent application throughout the study.

4.
Acta Biomater ; 146: 131-144, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35470073

RESUMO

An infecting and propagating parasite relies on its innate defense system to evade the host's immune response and to survive challenges from commensal bacteria. More so for the nematode Anisakis, a marine parasite that during its life cycle encounters both vertebrate and invertebrate hosts and their highly diverse microbiotas. Although much is still unknown about how the nematode mitigates the effects of these microbiota, its antimicrobial peptides likely play an important role in its survival. We identified anisaxins, the first cecropin-like helical antimicrobial peptides originating from a marine parasite, by mining available genomic and transcriptomic data for Anisakis spp. These peptides are potent bactericidal agents in vitro, selectively active against Gram-negative bacteria, including multi-drug resistant strains, at sub-micromolar concentrations. Their interaction with bacterial membranes was confirmed by solid state NMR (ssNMR) and is highly dependent on the peptide concentration as well as peptide to lipid ratio, as evidenced by molecular dynamics (MD) simulations. MD results indicated that an initial step in the membranolytic mode of action involves membrane bulging and lipid extraction; a novel mechanism which may underline the peptides' potency. Subsequent steps include membrane permeabilization leading to leakage of molecules and eventually cell death, but without visible macroscopic damage, as shown by atomic force microscopy and flow cytometry. This membranolytic antibacterial activity does not translate to cytotoxicity towards human peripheral blood mononuclear cells (HPBMCs), which was minimal at well above bactericidal concentrations, making anisaxins promising candidates for further drug development. STATEMENT OF SIGNIFICANCE: Witnessing the rapid spread of antibiotic resistance resulting in millions of infected and dozens of thousands dying worldwide every year, we identified anisaxins, antimicrobial peptides (AMPs) from marine parasites, Anisakis spp., with potent bactericidal activity and selectivity towards multi-drug resistant Gram-negative bacteria. Anisaxins are membrane-active peptides, whose activity, very sensitive to local peptide concentrations, involves membrane bulging and lipid extraction, leading to membrane permeabilization and bacterial cell death. At the same time, their toxicity towards host cells is negligible, which is often not the case for membrane-active AMPs, therefore making them suitable drug candidates. Membrane bulging and lipid extraction are novel concepts that broaden our understanding of peptide interactions with bacterial functional structures, essential for future design of such biomaterials.


Assuntos
Parasitos , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Bactérias , Humanos , Leucócitos Mononucleares , Lipídeos/farmacologia , Testes de Sensibilidade Microbiana
5.
Pathogens ; 10(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34451443

RESUMO

Gill monogenean Sparicotyle chrysophrii is considered the most detrimental fish parasite to the Mediterranean aquaculture. Treatment of sparicotylosis relies on frequent gill inspections correlated with the seasonal increase in seawater temperature, application of functional feeds, and treatments with formalin baths where permitted. While the latter is bound to be banned in Europe, other synthetic anthelminthics, such as praziquantel and ivermectin, are prone to induce resistance in the parasites. Therefore, we investigated, in vitro, 14 synthetic and natural compounds against adult S. chrysophrii, developing dose-response modelsm and estimated toxicity levels at 20%, 50%, and 80% parasite mortality. Bactericidal activity of target compounds was also tested in two important aquaculture bacteria; Vibrio harveyi and V. anguillarum, while their potential host toxicity was evaluated in gilthead seabream SAF-1 cell line. Synthetic compound bithionate sodium exerted the most potent toxicity against the monogenean, no host cytotoxicity, and a medium and high potency against two bacterial pathogens. In comparison, target natural compounds were approximately 20 (cedrol) or up to 154 times (camphor) less toxic for the monogenean. Rather than completely dismissing natural compounds, we suggest that their application in combination with synthetic drugs, especially if administered in the feed, might be useful in sparicotylosis treatment.

6.
Genomics ; 113(5): 2891-2905, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186188

RESUMO

Parasitism is a highly successful life strategy and a driving force in genetic diversity that has evolved many times over. Accidental infections of non-targeted hosts represent an opportunity for lateral host switches and parasite niche expansion. However, if directed toward organisms that are phylogenetically distant from parasite's natural host, such as humans, it may present a dead-end environment where the parasite fails to mature or is even killed by host immunity. One example are nematodes of Anisakidae family, genus Anisakis, that through evolution have lost the ability to propagate in terrestrial hosts, but can survive for a limited time in humans causing anisakiasis. To scrutinize versatility of Anisakis to infect an evolutionary-distant host, we performed transcriptomic profiling of larvae successfully migrating through the rat, a representative model of accidental human infection and compared it to that of larvae infecting an evolutionary-familiar, paratenic host (fish). In a homeothermic accidental host Anisakis upregulated ribosome-related genes, cell division, cuticle constituents, oxidative phosphorylation, in an unsuccessful attempt to molt to the next stage. In contrast, in the paratenic poikilothermic host where metabolic pathways were moderately upregulated or silenced, larvae prepared for dormancy by triggering autophagy and longevity pathways. Identified differences and the modelling of handful of shared transcripts, provide the first insights into evolution of larval nematode virulence, warranting their further investigation as potential drug therapy targets.


Assuntos
Anisaquíase , Anisakis , Animais , Anisaquíase/genética , Anisaquíase/parasitologia , Anisakis/genética , Peixes , Larva/genética , Ratos , Fatores de Virulência/genética
7.
Pathogens ; 10(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494355

RESUMO

Wild fish assemblages that aggregate within commercial marine aquaculture sites for feeding and shelter have been considered as a primary source of pathogenic parasites vectored to farmed fish maintained in net pens at an elevated density. In order to evaluate whether Ceratothoa oestroides (Isopoda, Cymothoidae), a generalist and pestilent isopod that is frequently found in Adriatic and Greek stocks of farmed European sea bass (Dicentrarchus labrax), transfers between wild and farmed fish, a RAD-Seq (restriction-site-associated DNA sequencing)-mediated genetic screening approach was employed. The double-digest RAD-Seq of 310 C. oestroides specimens collected from farmed European sea bass (138) and different wild farm-aggregating fish (172) identified 313 robust SNPs that evidenced a close genetic relatedness between the "wild" and "farmed" genotypes. ddRAD-Seq proved to be an effective method for detecting the discrete genetic structuring of C. oestroides and genotype intermixing between two populations. The parasite prevalence in the farmed sea bass was 1.02%, with a mean intensity of 2.0 and mean abundance of 0.02, while in the wild fish, the prevalence was 8.1%; the mean intensity, 1.81; and the mean abundance, 0.15. Such differences are likely a consequence of human interventions during the farmed fish's rearing cycle that, nevertheless, did not affect the transfer of C. oestroides.

8.
PLoS Negl Trop Dis ; 13(5): e0007397, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31091271

RESUMO

BACKGROUND: Anisakiasis is an emerging public health problem, caused by Anisakis spp. nematode larvae. Anisakiasis presents as variable and unspecific gastrointestinal and/or allergic clinical symptoms, which accounts for the high rate of misdiagnosed cases. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study was to characterize the early cellular (6-72 h p.i.) and molecular (6 h p.i.) immune response and general underlying regulatory mechanism in Anisakis infected rats. Each Sprague-Dawley rat was infected with 10 Anisakis spp. larvae by gastric intubation. Tissues with visible lesions were processed for: i) classic histopathology (HE), immunofluorescence (CD3, iNOS, S100A8/A9), and transmission electron microscopy (TEM); ii) target genes (Il1b, Il6, Il18, Ccl3, Icam1, Mmp9) and microRNA (Rat Immunopathology MIRN-104ZF plate, Quiagen) expression analysis; and iii) global DNA methylation. Histopathology revealed that Anisakis larval migration caused moderate to extensive hemorrhages in submucosal and epimysial/perimysial connective tissue. In stomach and muscle, moderate to abundant mixed inflammatory infiltrate was present, dominated by neutrophils and macrophages, while only mild infiltration was seen in intestine. Lesions were characterized by the presence of CD3+, iNOS+, and S100A8/A9+ cells. The greatest number of iNOS+ and S100A8/A9+ cells was seen in muscle. Il6, Il1b, and Ccl3 showed particularly strong expression in stomach and visceral adipose tissues, but the order of expression differed between tissues. In total, three miRNAs were differentially expressed, two in stomach (miRNA-451 and miRNA-223) and two in intestine (miRNA-451 and miRNA-672). No changes in global DNA methylation were observed in infected tissues relative to controls. CONCLUSIONS/SIGNIFICANCE: Anisakis infection induces strong immune responses in infected rats with marked induction of specific proinflammatory cytokines and miRNA expression. Deciphering the functional role of these cytokines and miRNAs will help in understanding the anisakiasis pathology and controversies surrounding Anisakis infection in humans.


Assuntos
Anisaquíase/genética , Anisaquíase/imunologia , Anisakis/fisiologia , Citocinas/genética , MicroRNAs/genética , Animais , Anisaquíase/parasitologia , Anisaquíase/patologia , Citocinas/imunologia , Metilação de DNA , Feminino , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/parasitologia , Trato Gastrointestinal/patologia , Humanos , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , MicroRNAs/imunologia , Ratos , Ratos Sprague-Dawley
9.
Front Immunol ; 9: 2055, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245697

RESUMO

Background: Anisakiasis is a zoonotic disease caused by accidental ingestion of live Anisakis spp. third-stage larvae present in raw or undercooked seafood. Symptoms of this emerging infectious disease include mild-to-severe abdominal pain, nausea, and diarrhea. Some patients experience significant allergic reactions. Aims: In order to better understand the onset of anisakiasis, we aimed to: (i) histopathologically describe severe inflammatory/hemorrhagic infection site lesions in Sprague-Dawley rats experimentally infected with Anisakis pegreffii larvae; and (ii) qualitatively and quantitatively characterize the transcriptomes of affected tissues using RNA-Seq. Methodology: The experiment was performed on 35 male rats, sacrificed at 5 time points (6, 10, 18, 24, and 32 h post-infection). Gastric intubation was performed with 10 A. pegreffii larvae (N = 5 infected rats per time point) or 1.5 ml of saline (external control N = 2 rats). 16 pools, seven for muscle tissues and nine for stomach tissues, were created to obtain robust samples for estimation of gene expression changes depicting common signatures of affected versus unaffected tissues. Illumina NextSeq 500 was used for paired-end sequencing, while edgeR was used for count data and differential expression analyses. Results: In total, there were 1372 (855 up and 517 down) differentially expressed (DE) genes in the Anisakis-infected rat stomach tissues, and 1633 (1230 up and 403 down) DE genes in the muscle tissues. Elicited strong local proinflammatory reaction seems to favor the activation of the interleukin 17 signaling pathway and the development of the T helper 17-type response. The number of DE ribosomal genes in the Anisakis-infected stomach tissue suggests that A. pegreffii larvae might induce ribosomal stress in the early infection stage. However, the downstream pathways and post-infection responses require further study. Histopathology revealed severe inflammatory/hemorrhagic lesions caused by Anisakis infection in the rat stomach and muscle tissues in the first 32 h. The lesion sites showed infiltration by polymorphonuclear leukocytes (predominantly neutrophils and occasional eosinophils), and to a lesser extent, macrophages. Conclusion: Understanding the cellular and molecular mechanisms underlying host responses to Anisakis infection is important to elucidate many aspects of the onset of anisakiasis, a disease of growing public health concern.


Assuntos
Anisaquíase/parasitologia , Anisakis/fisiologia , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida , Animais , Anisaquíase/genética , Anisaquíase/imunologia , Anisaquíase/patologia , Biologia Computacional , Mucosa Gástrica/metabolismo , Mucosa Gástrica/parasitologia , Mucosa Gástrica/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Larva , Masculino , Ratos , Zoonoses
10.
Artigo em Inglês | MEDLINE | ID: mdl-29987147

RESUMO

Anisakiasis is among the most significant emerging foodborne parasitoses contracted through consumption of thermally unprocessed seafood harboring infective Anisakis species larvae. The efficacy of the currently applied anthelminthic therapy in humans and in model organisms has not proven sufficient, so alternative solutions employing natural compounds combined with chemical inhibitors should be explored. By testing toxicity of the natural monoterpenes nerolidol and farnesol and the conventional anthelminthics abamectin and levamisole in the presence/absence of MK-571 and Valspodar, which inhibit the ABC transporter proteins multidrug resistance protein (MRP-like) and P-glycoprotein (P-gp), we determined the preliminary traits of Anisakis detoxifying mechanisms. We found that Anisakis P-gp and MRP-like transporters have a role in the efflux of the tested compounds, which could be useful in the design of novel anthelminthic strategies. As expected, transporter activation and efflux fluctuated over time; they were synchronously active very early postexposure, whereas the activity of one transporter dominated over the other in a time-dependent manner. MRP-like transporters dominated in the efflux of farnesol, and P-gp dominated in efflux of nerolidol, while both were active in effluxing levamisole. The highest toxicity was exerted by abamectin, a P-gp inhibitor per se, which also elicited the highest oxidative stress in treated Anisakis larvae. We suggest that ß-tubulin, observed for the first time as a core element in Anisakis cuticle, might represent an important target for the tested compounds.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Anisaquíase/tratamento farmacológico , Anisakis/efeitos dos fármacos , Anisakis/metabolismo , Antiparasitários/farmacologia , Larva/efeitos dos fármacos , Nematoides/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Anisaquíase/parasitologia , Humanos , Larva/metabolismo , Levamisol/farmacologia , Nematoides/metabolismo , Sesquiterpenos/farmacologia , Tubulina (Proteína)/metabolismo
11.
Int J Parasitol ; 47(4): 215-223, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28057461

RESUMO

The genus Anisakis includes nine species which, due to close morphological resemblance even in the adult stage, have previously caused many issues in their correct identification. Recently observed interspecific hybridisation in sympatric areas of two closely related species, Anisakis simplex sensu stricto (s.s.) and Anisakis pegreffii, has raised concerns whether a F1 hybrid generation is capable of overriding the breeding barrier, potentially giving rise to more resistant/pathogenic strains infecting humans. To assess the ecological significance of anisakid genotypes in the Adriatic Sea, an allopatric area for the two above-mentioned species, we analysed data from PCR-RFLP genotyping of the ITS region and the sequence of the cytochrome oxidase 2 (cox2) mtDNA locus to discern the parental genotype and maternal haplotype of the individuals. Furthermore, using in silico genome-wide screening of the A. simplex database for polymorphic simple sequence repeats or microsatellites in non-coding regions, we randomly selected potentially informative loci that were tested and optimised for multiplex PCR. The first panel of microsatellites developed for Anisakis was shown to be highly polymorphic, sensitive and amplified in both A. simplex s.s. and A. pegreffii. It was used to inspect genetic differentiation of individuals showing mito-nuclear mosaicism which is characteristic for both species. The observed low level of intergroup heterozygosity suggests that existing mosaicism is likely a retention of an ancestral polymorphism rather than a recent recombination event. This is also supported by allopatry of pure A. simplex s.s. and A. pegreffii in the geographical area under study.


Assuntos
Anisakis/classificação , Anisakis/genética , Variação Genética , Genótipo , Recombinação Genética , Animais , Análise por Conglomerados , Ciclo-Oxigenase 2/genética , DNA de Helmintos/química , DNA de Helmintos/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Repetições de Microssatélites , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Água do Mar/parasitologia , Análise de Sequência de DNA
12.
Front Microbiol ; 7: 1244, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551281

RESUMO

Commercially available probiotics are routinely administered as feed supplements in aquaculture important species. Among them, the European sea bass (Dicentrarchus labrax) is the most widely reared fish in the Mediterranean, whose rearing systems are highly variable between countries, affecting at some level the sustainability of production. After random isolation of autochthonous gut bacteria of the sea bass, their identification and pathogenicity testing, we have selected three potentially probiotic isolates; Pseudoalteromonas sp., Alteromonas sp., and Enterovibrio coralii. Selected isolates were tested and their immunostimulative efficiency was compared with a commercially available Lactobacillus casei isolate, inferring inflammatory, apoptotic and anti-pathogen response of sea bass' peripheral blood leukocytes. Phagocytic activity, respiratory burst, and expression of lysozyme, Mx protein, caspase 3, TNF-α, IL-10 genes was measured 1, 3, 5, and 12 h post-stimulation by four bacterial isolates to evaluate early kinetics of the responses. Best immunostimulative properties were observed in Pseudoalteromonas-stimulated leukocytes, followed by Alteromonas sp. and L. casei, while Enterovibrio coralii failed to induce significant stimulation. Based on such in vitro assay intestinal autochthonous bacterial isolates showed to have better immunostimulative effect in sea bass compared to aquaculture-widely used L. casei, and further steps need to engage tank and field feeding trials to evaluate long-term prophylactic suitability of the chosen isolates. A panel of biomarkers that represent pro-/anti-inflammatory, pro-/anti-apoptotic, and anti-bacteria/viral responses of the fish should be taken into consideration when evaluating the usefulness of the potential probiotic in aquaculture.

13.
BMC Genomics ; 16: 1007, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26607231

RESUMO

BACKGROUND: The largest of the tuna species, Atlantic bluefin tuna (Thunnus thynnus), inhabits the North Atlantic Ocean and the Mediterranean Sea and is considered to be an endangered species, largely a consequence of overfishing. T. thynnus aquaculture, referred to as fattening or farming, is a capture based activity dependent on yearly renewal from the wild. Thus, the development of aquaculture practices independent of wild resources can provide an important contribution towards ensuring security and sustainability of this species in the longer-term. The development of such practices is today greatly assisted by large scale transcriptomic studies. RESULTS: We have used pyrosequencing technology to sequence a mixed-tissue normalised cDNA library, derived from adult T. thynnus. A total of 976,904 raw sequence reads were assembled into 33,105 unique transcripts having a mean length of 893 bases and an N50 of 870. Of these, 33.4% showed similarity to known proteins or gene transcripts and 86.6% of them were matched to the congeneric Pacific bluefin tuna (Thunnus orientalis) genome, compared to 70.3% for the more distantly related Nile tilapia (Oreochromis niloticus) genome. Transcript sequences were used to develop a novel 15 K Agilent oligonucleotide DNA microarray for T. thynnus and comparative tissue gene expression profiles were inferred for gill, heart, liver, ovaries and testes. Functional contrasts were strongest between gills and ovaries. Gills were particularly associated with immune system, signal transduction and cell communication, while ovaries displayed signatures of glycan biosynthesis, nucleotide metabolism, transcription, translation, replication and repair. CONCLUSIONS: Sequence data generated from a novel mixed-tissue T. thynnus cDNA library provide an important transcriptomic resource that can be further employed for study of various aspects of T. thynnus ecology and genomics, with strong applications in aquaculture. Tissue-specific gene expression profiles inferred through the use of novel oligo-microarray can serve in the design of new and more focused transcriptomic studies for future research of tuna physiology and assessment of the welfare in a production environment.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos , Atum/genética , Animais , Mapeamento Cromossômico , Análise por Conglomerados , Biologia Computacional/métodos , DNA Complementar , Perfilação da Expressão Gênica , Biblioteca Gênica , Genômica , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes , Transcriptoma
14.
Fish Shellfish Immunol ; 45(2): 946-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26071319

RESUMO

Pro-inflammatory cytokines play an important role in teleost defence against numerous types of pathogens, therefore are often used as biomarkers during various infections. In order to evaluate Atlantic bluefin tuna IL-1ß, TNFα1 and TNFα2 induction by PAMPs, we quantified their expression during in vitro stimulation of peripheral blood leukocytes by LPS and Poly I:C. Furthermore, their role in acute and chronic parasitic infection was examined during natural infection of Pseudocycnus appendiculatus (Copepoda) and Didymosulcus katsuwonicola (Digenea), as well as during leukocyte exposure to total protein extracts isolated from two parasite species. Induction of ABT IL-1ß and TNFα2 by PAMPs and protein extracts from D. katsuwonicola and P. appendiculatus, as well as during natural infection with two parasites, suggests these cytokines play an important role in inflammation, being engaged in controlling parasite infections, in contrast to ABT TNFα1. Cellular innate response to the digenean D. katsuwonicola showed rather chronic character, resulting with parasite encapsulation in connective tissue. Mast cells, eosinophils, goblet cells, and occasional rodlet cells found at the site of infection, along with the induction of TNFα2, suggest the presence of a moderate inflammatory reaction that fails to seriously endanger digenean existence. In contrast, copepod P. appendiculatus, attached to the gill epithelium by clamping, caused direct tissue disruption with undergoing necrotic or apoptotic processes, and extensive proliferation of rodlet and goblet cells. Differential expression patterns of target cytokines in tissue surrounding two parasites and in vitro PBL model suggest that quality and quantity of tuna immune response is conditioned by parasite adaptive mechanisms and pathogenicity.


Assuntos
Copépodes/fisiologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Interleucina-1beta/genética , Trematódeos/fisiologia , Infecções por Trematódeos/veterinária , Fator de Necrose Tumoral alfa/genética , Atum , Animais , Doenças dos Peixes/parasitologia , Proteínas de Peixes/metabolismo , Interleucina-1beta/metabolismo , Infecções por Trematódeos/genética , Infecções por Trematódeos/imunologia , Infecções por Trematódeos/parasitologia , Fator de Necrose Tumoral alfa/metabolismo
15.
Dis Aquat Organ ; 91(2): 151-9, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21387994

RESUMO

Pathogens belonging to the genus Perkinsus infect many bivalve molluscan species around the world, including the Manila clam Ruditapes philippinarum. We investigated the spatial distribution of this parasite at 34 stations throughout Arcachon Bay (SW France). Prevalence of perkinsosis was 93% and mean infection abundance was 96 x 10(3) cells g(-1) wet gill. Lowest mean abundances were found close to the Leyre River mouth and a significant negative correlation was observed between mean abundance and salinity. Perkinsosis was rare at the oceanic site where salinities and other environmental parameters were stable. A second aim of this study was to survey perkinsosis during annual cycles at 4 sites within Arcachon Bay. Prevalence and intensities (+/- SE) of the disease were high, on average between 70 and 100%, and 130 x 10(3) +/- 6.7 x 10(3) cells g(-1) wet gill. No seasonal cycle was evident. Clams were infected at 9 mm shell length and infection increased with clam size. The third objective was to determine the disinfection and infection kinetics through a 21 mo reciprocal transplantation between a nearly Perkinsus sp.-free area and a highly affected site. Disinfection appeared to be a very slow process and was similar at the site with favorable conditions for Perkinsus sp. as at the site with unfavorable conditions. Conversely, infection acquisition appeared to be episodic with spatially defined areas. Consequently, the overall lack of a clear seasonal infection pattern is interpreted as the combination of episodic infection events and slow disinfection kinetics.


Assuntos
Bivalves/parasitologia , Eucariotos/isolamento & purificação , Animais , França , Interações Hospedeiro-Parasita , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...