Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indoor Air ; 15(4): 235-45, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15982270

RESUMO

UNLABELLED: Numerous techniques have been developed over the years for reducing aerosol exposure in indoor air environments. Among indoor air purifiers of different types, ionic emitters have gained increasing attention and are presently used for removing dust particles, aeroallergens and airborne microorganisms from indoor air. In this study, five ionic air purifiers (two wearable and three stationary) that produce unipolar air ions were evaluated with respect to their ability to reduce aerosol exposure in confined indoor spaces. The concentration decay of respirable particles of different properties was monitored in real time inside the breathing zone of a human manikin, which was placed in a relatively small (2.6 m3) walk-in chamber during the operation of an ionic air purifier in calm air and under mixing air condition. The particle removal efficiency as a function of particle size was determined using the data collected with a size-selective optical particle counter. The removal efficiency of the more powerful of the two wearable ionic purifiers reached about 50% after 15 min and almost 100% after 1.5 h of continuous operation in the chamber under calm air conditions. In the absence of external ventilation, air mixing, especially vigorous one (900 CFM), enhanced the air cleaning effect. Similar results were obtained when the manikin was placed inside a partial enclosure that simulated an aircraft seating configuration. All three stationary ionic air purifiers tested in this study were found capable of reducing the aerosol concentration in a confined indoor space. The most powerful stationary unit demonstrated an extremely high particle removal efficiency that increased sharply to almost 90% within 5-6 min, reaching about 100% within 10-12 min for all particle sizes (0.3-3 microm) tested in the chamber. For the units of the same emission rate, the data suggest that the ion polarity per se (negative vs. positive) does not affect the performance but the ion emission rate does. The effects of particle size (within the tested range) and properties (NaCl, PSL, Pseudomonas fluorescens bacteria) as well as the effects of the manikin's body temperature and its breathing on the ionic purifier performance were either small or insignificant. The data suggest that the unipolar ionic air purifiers are particularly efficient in reducing aerosol exposure in the breathing zone when used inside confined spaces with a relatively high surface-to-volume ratio. PRACTICAL IMPLICATIONS: Ionic air purifiers have become increasingly popular for removing dust particles, aeroallergens and airborne microorganisms from indoor air in various settings. While the indoor air cleaning effect, resulting from unipolar and bipolar ion emission, has been tested by several investigators, there are still controversial claims (favorable and unfavorable) about the performance of commercially available ionic air purifiers. Among the five tested ionic air purifiers (two wearable and three stationary) producing unipolar air ions, the units with a higher ion emission rate provided higher particle removal efficiency. The ion polarity (negative vs. positive), the particle size (0.3-3 microm) and properties (NaCl, PSL, Pseudomonas fluorescens bacteria), as well as the body temperature and breathing did not considerable affected the ionization-driven particle removal. The data suggest that the unipolar ionic air purifiers are particularly efficient in reducing aerosol exposure in the breathing zone when they are used inside confined spaces with a relatively high surface-to-volume ratio (such as automobile cabins, aircraft seating areas, bathrooms, cellular offices, small residential rooms, and animal confinements). Based on our experiments, we proposed that purifiers with a very high ion emission rate be operated in an intermittent mode if used indoors for extended time periods. As the particles migrate to and deposit on indoor surfaces during the operation of ionic air purifiers, some excessive surface contamination may occur, which introduces the need of periodic cleaning these surfaces.


Assuntos
Aerossóis/isolamento & purificação , Ionização do Ar , Poluição do Ar em Ambientes Fechados/prevenção & controle , Movimentos do Ar , Desenho de Equipamento , Filtração , Humanos , Tamanho da Partícula , Pseudomonas fluorescens/isolamento & purificação
2.
AIHAJ ; 62(3): 313-21, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11434437

RESUMO

The overall filtration efficiency of a vacuum cleaner traditionally has been tested by placing the vacuum cleaner in a test chamber and measuring aerosol concentrations at the chamber inlet and outlet. The chamber test method was refined and validated in this study. However, this chamber test method shows an overall filtration efficiency of close to 100% for most of the industrial vacuum cleaners and for most of the newly developed household vacuum cleaners of midprice range or higher because all these vacuum cleaners have a high-efficiency particulate air (HEPA) or other highly efficient filter installed at the exhaust. A new test method was therefore developed through which the vacuum cleaner was probed in various internal locations so that the collection efficiency of the individual components could be determined. For example, the aerosol concentration upstream of the final HEPA filter can thus be measured, which permits one to estimate the life expectancy of this expensive component. The probed testing method is particularly suitable for field evaluations of vacuum cleaners because it uses compact, battery-operated optical particle size spectrometers with internal data storage. Both chamber and probed tests gave the same results for the aerosol filtration efficiency. The probed testing method, however, also gives information on the performance of the individual components in a vacuum cleaner. It also can be used to determine the dust pickup efficiency and the degree of reaerosolization of particles collected in the vacuum cleaner.


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Utensílios Domésticos , Filtração/instrumentação , Humanos , Tamanho da Partícula
3.
AIHAJ ; 61(5): 743-52, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11071428

RESUMO

The 1995 Department of Housing and Urban Development (HUD) Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing discusses using interior and exterior wall enclosures for lead hazard control. Leaded dust may be aerosolized inside enclosures and released through gaps and cracks into a room. The effects of airflow and mechanical disturbances on dust release were studied using a laboratory wall enclosure model with dust collected from homes with lead-based paint hazards. Airflows relevant to residences were blown down the enclosure and out a 4-, 6-, or 8-mm horizontal gap at its bottom, simulating potential enclosure failure. Then, low-frequency mechanical vibrations also were applied to the enclosure. No significant dust release was found when blowing air down the enclosure even at 37 cm/sec (representing extremely high flow); release occurred only with this high flow and 3 Hz mechanical disturbances. Dust was released primarily from the floor area immediately adjacent to the enclosure gap; the release rate fluctuated over time. Most dust initially settled near the enclosure. Dust release for 1 hour at extreme conditions (high airflow with vibration) yields lead loading above the 1995 HUD clearance level of 100 microg/ft2 only within 3-4 cm of the wall; for the HUD standard (1 ft2) sampling area, the lead loading does not exceed 30 microg/ ft2. Redistributing dust over the room's 16 m2 floor space yields average extreme-condition loading rate of 2 microg/ft2/hour. At less-than-extreme conditions, dust would have to be released for years without cleaning to yield a hazard.


Assuntos
Poeira/análise , Chumbo/análise , Pintura/análise , Gestão da Segurança/normas , Humanos , Tamanho da Partícula
4.
AIHAJ ; 61(6): 798-807, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11192211

RESUMO

This study investigated the evolution of airborne particle concentration and size distribution following abatement work in a controlled environment utilizing direct real-time particle monitoring and used it to project potential lead loadings as those particles settle. An 860 ft3 environmental test chamber with sophisticated ventilation and air purifying systems was built. Wooden doors with lead-based paint were dry sanded or scraped to generate the highest feasible airborne lead concentrations. Size-fractional airborne particle concentrations decreased exponentially with time in all tests, even with no air exchange, consistent with the stirred model of constantly mixed air, which predicts longer settling than for tranquil settling. Very low levels of air mixing generated by temperature gradients and initial room air turbulence affected particle settling. About 90% of airborne lead mass settled within 1 hour after active abatement, before final cleaning began. During the second waiting period of 1 hour, which followed cleaning of the floor, additional dust settled so that the additional potential lead loading from remaining airborne lead was less than 20 microg/ft2. For this worst case scenario, the underestimate of the lead loading done by the clearance sampling did not exceed about 30%. For more realistic conditions, the underestimates are projected to be much lower than the new 40 microg/ft2 Housing and Urban Development (HUD) clearance standards for floor dust lead. These results were obtained for the first waiting period (between the end of active abatement and the beginning of cleaning) of 1 hour, as recommended by HUD guidelines. Thus, this study demonstrates no need to increase either the first or second waiting period.


Assuntos
Poluentes Ocupacionais do Ar/análise , Habitação/normas , Chumbo/análise , Exposição Ocupacional/análise , Poeira/análise , Humanos , Ohio , Tamanho da Partícula , Estados Unidos , Ventilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...