Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 10(9): 6161-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21133166

RESUMO

The quantitative investigation of magnetic nanostructures by means of ferromagnetic resonance is demonstrated for single-crystalline iron nanostructures. It is shown that the single-crystalline nature leads to effects not being present in polycrystalline ones and helps to quantitatively interpret the results. First a method is presented that enables one to fabricate epitaxial Fe nanowires starting from a thin film of Fe grown under ultrahigh vacuum conditions on GaAs (110). The system allows, due to the combination of cubic and twofold magnetic anisotropy, to prepare wires whose easy axis in remanence is oriented perpendicular to the wires axis. This unique feature is only achievable in epitaxial systems. Furthermore, nearly perfect Fe nanocubes with 13.6 nm edge length prepared by wet-chemical methods are studied. While the shell of the particles is composed of either Fe3O4 or gamma-Fe2O3, the core consists of metallic Fe. Oxygen and hydrogen plasma are used to remove the ligand system and the oxide shell. The single-crystalline nature of the cubes enables one to quantitatively determine the magnetic properties of the individual particle by means of ferromagnetic resonance measurements on an ensemble together with a model based on the Landau-Lifshitz equation. The measurements reveal a magneto-crystalline anisotropy of K4 = 4.8. 10(4) J/m3 being equal to bulk value and a saturation magnetization which is reduced to M(5K) = (1.2 +/- 0.12). 10(6) A/m (70% of bulk value). The effective damping parameter alpha = 0.03 is increased by one order of magnitude with respect to bulk Fe, showing that magnetic damping in nanostructures differs from the bulk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...