Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 178(1): 159-172, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32894766

RESUMO

Dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyl-dichloroethylene (DDE) are ubiquitously found in the environment and linked to cardiovascular diseases-with a majority of the work focused on hypertension. Studies investigating whether DDx can interact with molecular targets on cardiac tissue to directly affect cardiac function are lacking. Therefore, we investigated whether o,p'-DDT, p,p'-DDT, o,p'-DDE, or p,p'-DDE (DDx, collectively) can directly alter the function of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) by assessing their effect(s) on hiPSC-CMs Ca2+ dynamics. DDx (0.1-10 µM) affected hiPSC-CMs synchronous Ca2+ oscillation frequency in a concentration-dependent manner, with p,p'-DDT and p,p'-DDE also decreasing Ca2+ stores. HEK-RyR2 cells cultured under antibiotic selection to induce expression of wild-type mouse ryanodine receptor type 2 (RyR2) are used to further investigate whether DDx alters hiPSC-CMs Ca2+ dynamics through engagement with RyR2, a protein critical for cardiac muscle excitation-contraction coupling (ECC). Acute treatment with 10 µM DDx failed to induce Ca2+ release in HEK293-RyR2, whereas pretreatment with DDx (0.1-10 µM) for 12- or 24-h significantly decreased sarcoplasmic reticulum Ca2+ stores in HEK-RyR2 cells challenged with caffeine (1 mM), an RyR agonist. [3H]ryanodine-binding analysis using murine cardiac RyR2 homogenates further confirmed that all DDx isomers (10 µM) can directly engage with RyR2 to favor an open (leaky) confirmation, whereas only the DDT isomers (10 µM) modestly (≤10%) inhibited SERCA2a activity. The data demonstrate that DDx increases heart rate and depletes Ca2+ stores in human cardiomyocytes through a mechanism that impairs RyR2 function and Ca2+ dynamics. IMPACT STATEMENT: DDT/DDE interactions with RyR2 alter cardiomyocyte Ca2+ dynamics that may contribute to adverse cardiovascular outcomes associated with exposures.


Assuntos
Cardiotoxicidade , DDT/toxicidade , Diclorodifenil Dicloroetileno/toxicidade , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
2.
Toxicol Sci ; 170(2): 509-524, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127943

RESUMO

Dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) are ubiquitous in the environment and detected in tissues of living organisms. Although DDT owes its insecticidal activity to impeding closure of voltage-gated sodium channels, it mediates toxicity in mammals by acting as an endocrine disruptor (ED). Numerous studies demonstrate DDT/DDE to be EDs, but studies examining muscle-specific effects mediated by nonhormonal receptors in mammals are lacking. Therefore, we investigated whether o,p'-DDT, p,p'-DDT, o,p'-DDE, and p,p'-DDE (DDx, collectively) alter the function of ryanodine receptor type 1 (RyR1), a protein critical for skeletal muscle excitation-contraction coupling and muscle health. DDx (0.01-10 µM) elicited concentration-dependent increases in [3H]ryanodine ([3H]Ry) binding to RyR1 with o,p'-DDE showing highest potency and efficacy. DDx also showed sex differences in [3H]Ry-binding efficacy toward RyR1, where [3H]Ry-binding in female muscle preparations was greater than male counterparts. Measurements of Ca2+ transport across sarcoplasmic reticulum (SR) membrane vesicles further confirmed DDx can selectively engage with RyR1 to cause Ca2+ efflux from SR stores. DDx also disrupts RyR1-signaling in HEK293T cells stably expressing RyR1 (HEK-RyR1). Pretreatment with DDx (0.1-10 µM) for 100 s, 12 h, or 24 h significantly sensitized Ca2+-efflux triggered by RyR agonist caffeine in a concentration-dependent manner. o,p'-DDE (24 h; 1 µM) significantly increased Ca2+-transient amplitude from electrically stimulated mouse myotubes compared with control and displayed abnormal fatigability. In conclusion, our study demonstrates DDx can directly interact and modulate RyR1 conformation, thereby altering SR Ca2+-dynamics and sensitize RyR1-expressing cells to RyR1 activators, which may ultimately contribute to long-term impairments in muscle health.


Assuntos
DDT/toxicidade , Diclorodifenil Dicloroetileno/toxicidade , Músculo Esquelético/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Caracteres Sexuais
3.
Toxicol Sci ; 171(2): 282, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30830166
4.
Toxicol Sci ; 167(2): 509-523, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30329129

RESUMO

Chlorantraniliprole (CP) and flubendiamide (FD) are widely used in agriculture globally to control lepidopteran pests. Both insecticides target ryanodine receptors (RyRs) and promote Ca2+ leak from sarcoplasmic reticulum (SR) within insect skeletal muscle yet are purportedly devoid of activity toward mammalian RyR1 and muscle. RyRs are ion channels that regulate intracellular Ca2+ release from SR during physiological excitation-contraction coupling. Mutations in RYR1 genes confer malignant hyperthermia susceptibility (MHS), a potentially lethal pharmacogenetic disorder in humans and animals. Compared with vehicle control, CP (10 µM) triggers a 65-fold higher rate of Ca2+ efflux from Ca2+-loaded mammalian WT-RyR1 SR vesicles, whereas FD (10 µM) produces negligible influence on Ca2+ leak. We, therefore, compared whether CP or FD differentially influence patterns of high-affinity [3H]ryanodine ([3H]Ry) binding to RyR1 isolated from muscle SR membranes prepared from adult C57BL/6J mice expressing WT, homozygous C-terminal MHS mutation T4826I, or heterozygous N-terminal MHS mutation R163C. Basal [3H]Ry binding differed among genotypes with rank order T4826I ≫R163C∼WT, regardless of [Ca2+] in the assay medium. Both CP and FD (0.01-100 µM) elicited concentration-dependent increase in [3H]Ry binding, although CP showed greater efficacy regardless of genotype or [Ca2+]. Exposure to CP (500 mg/kg; p.o) failed to shift intolerance to heat stress (38°C) characteristic of R163C and T4826I MHS mice, nor cause lethality in WT mice. Although nM-µM of either diamide is capable of differentially altering WT and MHS RyR1 conformation in vitro, human RyR1 mutations within putative diamide N- and C-terminal interaction domains do not alter heat stress intolerance (HSI) in vivo.


Assuntos
Benzamidas/toxicidade , Cálcio/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Hipertermia Maligna/metabolismo , Músculo Esquelético/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sulfonas/toxicidade , ortoaminobenzoatos/toxicidade , Animais , Relação Dose-Resposta a Droga , Resposta ao Choque Térmico/genética , Heterozigoto , Homozigoto , Masculino , Hipertermia Maligna/genética , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Mutação , Ligação Proteica , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
5.
Environ Sci Technol ; 46(20): 11393-401, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22974126

RESUMO

Epidemiological and laboratory studies link polychlorinated biphenyls and their metabolites to adverse neurodevelopmental outcomes. Several neurotoxic PCB congeners are chiral and undergo enantiomeric enrichment in mammalian species, which may modulate PCB developmental neurotoxicity. This study measures levels and enantiomeric enrichment of PCB 95 and its hydroxylated metabolites (OH-PCBs) in adult female C57Bl/6 mice following subchronic exposure to racemic PCB 95. Tissue levels of PCB 95 and OH-PCBs increased with increasing dose. Dose-dependent enantiomeric enrichment of PCB 95 was observed in brain and other tissues. OH-PCBs also displayed enantiomeric enrichment in blood and liver, but were not detected in adipose and brain. In light of data suggesting enantioselective effects of chiral PCBs on molecular targets linked to PCB developmental neurotoxicity, our observations highlight the importance of accounting for PCB and OH-PCB enantiomeric enrichment in the assessment of PCB developmental neurotoxicity.


Assuntos
Poluentes Ambientais/metabolismo , Bifenilos Policlorados/metabolismo , Animais , Poluentes Ambientais/toxicidade , Feminino , Hidroxilação , Camundongos , Camundongos Endogâmicos C57BL , Bifenilos Policlorados/toxicidade , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...