Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(3): 2887-2896, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36713701

RESUMO

The overuse of antibiotics in aquaculture and pharmaceuticals and their subsequent leaking into the environment have been demonstrated to be a potential route for creating antibiotic resistance in bacteria. In order to assess the impact of this problem and take regulatory measures, it is necessary to develop tools that allow for the detection of antibiotics in environmental samples in a routine, low-cost manner. In this study, we integrated gold nanoparticles (AuNPs) into a molecularly imprinted polymer (MIP) membrane to fabricate a new sensor for the detection of norfloxacin in pharmaceuticals and aquaculture samples. The receptor layers were characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and Raman spectroscopy. The results of these studies demonstrate that the addition of AuNPs to the polymer network enhanced the sensor sensitivity by at least a factor of two. The MIP-AuNPs sensor has a low detection limit (0.15 ng/mL, S/N = 3) with a wide linear range and very high sensitivity. The selectivity of the fabricated sensor was measured in the sample containing other antibiotics (like chloramphenicol, ciprofloxacin, and levofloxacin). Rapid and precise norfloxacin detection in pharmaceutical compounds and fishpond water samples indicates that the fabricated sensor has the potential to be used for routine screening of aquacultures and pharmaceutical processes.

2.
Biochemistry ; 59(13): 1378-1390, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32043865

RESUMO

Zinc-finger structure, in which a Zn2+ ion binds to four cysteines or histidines in a tetrahedral structure, is a very common motif of nucleic acid-binding proteins. The corresponding interaction model is present in 3% of the genes in the human genome. As a result, the zinc finger has been extremely useful in various therapeutic and research capacities and in biotechnology. In a stable configuration of the zinc finger, the cysteine amino acids are deprotonated and become negatively charged. Thus, the Zn2+ ion is overscreened by four cysteine charges (overcharged). Whether this overcharged configuration is also stable when such a negatively charged zinc finger binds to a negatively charged DNA molecule is unknown. We investigated how the deprotonated state of cysteine influences its structure, dynamics, and function in binding to DNA molecules by using an all-atom molecular dynamics simulation up to the microsecond range of an androgen receptor protein dimer. Our results showed that the deprotonated state of cysteine residues is essential for the mechanical stabilization of the functional, folded conformation. This state stabilizes not only the protein structure but also the protein-DNA binding complex. The differences in the structural and energetic properties of the two sequence-identical monomers are also investigated and show the strong influence of DNA on the structure of the zinc-finger protein dimer upon complexation. Our result can potentially lead to a better molecular understanding of one of the most common classes of zinc fingers.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , DNA/química , DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Análise Serial de Proteínas , Zinco/química , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...