Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 11(1): 118, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464280

RESUMO

Repetitive mild traumatic brain injury (r-mTBI) has increasingly become recognised as a risk factor for the development of neurodegenerative diseases, many of which are characterised by tau pathology, metal dyshomeostasis and behavioural impairments. We aimed to characterise the status of tau and the involvement of iron dyshomeostasis in repetitive controlled cortical impact injury (5 impacts, 48 h apart) in 3-month-old C57Bl6 mice at the chronic (12-month) time point. We performed a battery of behavioural tests, characterised the status of neurodegeneration-associated proteins (tau and tau-regulatory proteins, amyloid precursor protein and iron-regulatory proteins) via western blot; and metal levels using bulk inductively coupled plasma-mass spectrometry (ICP-MS). We report significant changes in various ipsilateral iron-regulatory proteins following five but not a single injury, and significant increases in contralateral iron, zinc and copper levels following five impacts. There was no evidence of tau pathology or changes in tau-regulatory proteins following five impacts, although some changes were observed following a single injury. Five impacts resulted in significant gait deficits, mild anhedonia and mild cognitive deficits at 9-12 months post-injury, effects not seen following a single injury. To the best of our knowledge, we are the first to describe chronic changes in metals and iron-regulatory proteins in a mouse model of r-mTBI, providing a strong indication towards an overall increase in brain iron levels (and other metals) in the chronic phase following r-mTBI. These results bring to question the relevance of tau and highlight the involvement of iron dysregulation in the development and/or progression of neurodegeneration following injury, which may lead to new therapeutic approaches in the future.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Camundongos , Animais , Concussão Encefálica/patologia , Camundongos Transgênicos , Ferro , Proteínas Reguladoras de Ferro , Camundongos Endogâmicos C57BL , Proteínas tau/metabolismo , Fatores de Transcrição , Modelos Animais de Doenças , Lesões Encefálicas Traumáticas/complicações
2.
Br J Pharmacol ; 180(2): 214-234, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36102035

RESUMO

BACKGROUND AND PURPOSE: Traumatic brain injury (TBI) remains a leading cause of mortality and morbidity in young adults. The role of iron in potentiating neurodegeneration following TBI has gained recent interest as iron deposition has been detected in the injured brain in the weeks to months post-TBI, in both the preclinical and clinical setting. A failure in iron homeostasis can lead to oxidative stress, inflammation and excitotoxicity; and whether this is a cause or consequence of the long-term effects of TBI remains unknown. EXPERIMENTAL APPROACH: We investigated the role of iron and the effect of therapeutic intervention using a brain-permeable iron chelator, deferiprone, in a controlled cortical impact mouse model of TBI. An extensive assessment of cognitive, motor and anxiety/depressive outcome measures were examined, and neuropathological and biochemical changes, over a 3-month period post-TBI. KEY RESULTS: Lesion volume was significantly reduced at 3 months, which was preceded by a reduction in astrogliosis, microglia/macrophages and preservation of neurons in the injured brain at 2 weeks and/or 1 month post-TBI in mice receiving oral deferiprone. Deferiprone treatment showed significant improvements in neurological severity scores, locomotor/gait performance and cognitive function, and attenuated anxiety-like symptoms post-TBI. Deferiprone reduced iron levels, lipid peroxidation/oxidative stress and altered expression of neurotrophins in the injured brain over this period. CONCLUSION AND IMPLICATIONS: Our findings support a detrimental role of iron in the injured brain and suggest that deferiprone (or similar iron chelators) may be promising therapeutic approaches to improve survival, functional outcomes and quality of life following TBI.


Assuntos
Lesões Encefálicas Traumáticas , Qualidade de Vida , Animais , Camundongos , Deferiprona/farmacologia , Deferiprona/uso terapêutico , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Ferro
3.
Cell Mol Life Sci ; 78(19-20): 6605-6630, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34476545

RESUMO

Motor neurone disease (MND) is a neurodegenerative disorder characterised by progressive destruction of motor neurons, muscle paralysis and death. The amyloid precursor protein (APP) is highly expressed in the central nervous system and has been shown to modulate disease outcomes in MND. APP is part of a gene family that includes the amyloid precursor-like protein 1 (APLP1) and 2 (APLP2) genes. In the present study, we investigated the role of APLP2 in MND through the examination of human spinal cord tissue and by crossing APLP2 knockout mice with the superoxide dismutase 1 (SOD1-G37R) transgenic mouse model of MND. We found the expression of APLP2 is elevated in the spinal cord from human cases of MND and that this feature of the human disease is reproduced in SOD1-G37R mice at the End-stage of their MND-like phenotype progression. APLP2 deletion in SOD1-G37R mice significantly delayed disease progression and increased the survival of female SOD1-G37R mice. Molecular and biochemical analysis showed female SOD1-G37R:APLP2-/- mice displayed improved innervation of the neuromuscular junction, ameliorated atrophy of muscle fibres with increased APP protein expression levels in the gastrocnemius muscle. These results indicate a sex-dependent role for APLP2 in mutant SOD1-mediated MND and further support the APP family as a potential target for further investigation into the cause and regulation of MND.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Doença dos Neurônios Motores/metabolismo , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios Motores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Junção Neuromuscular/metabolismo , Fenótipo , Medula Espinal/metabolismo
4.
Neurochem Res ; 44(6): 1356-1366, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30362021

RESUMO

The amyloid precursor protein (APP) is a member of a conserved gene family that includes the amyloid precursor-like proteins 1 (APLP1) and 2 (APLP2). APP and APLP2 share a high degree of similarity, and have overlapping patterns of spatial and temporal expression in the central and peripheral tissues, in particular at the neuromuscular junction. APP-family knockout (KO) studies have helped elucidate aspects of function and functional redundancy amongst the APP-family members. In the present study, we investigated motor performance of APLP2-KO mice and the effect sex differences and age-related changes have on motor performance. APLP2-KO and WT (on C57Bl6 background) littermates control mice from 8 (young adulthood) to 48 weeks (middle age) were investigated. Analysis of motor neuron and muscle morphology showed APLP2-KO females but not males, had less age-related motor function impairments. We observed age and sex differences in both motor neuron number and muscle fiber size distribution for APLP2-KO mice compared to WT (C57Bl6). These alterations in the motor neuron number and muscle fiber distribution pattern may explain why female APLP2-KO mice have far better motor function behaviour during ageing.


Assuntos
Envelhecimento/fisiologia , Precursor de Proteína beta-Amiloide/deficiência , Atividade Motora/fisiologia , Fatores Etários , Envelhecimento/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/patologia , Músculo Esquelético/patologia , Fatores Sexuais , Medula Espinal/patologia
5.
Glia ; 67(3): 525-538, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30506868

RESUMO

The identification of factors that regulate myelination provides important insight into the molecular mechanisms that coordinate nervous system development and myelin regeneration after injury. In this study, we investigated the role of amyloid precursor protein (APP) and its paralogue amyloid precursor-like protein 2 (APLP2) in myelination using APP and APLP2 knockout (KO) mice. Given that BACE1 regulates myelination and myelin sheath thickness in both the peripheral and central nervous systems, we sought to determine if APP and APLP2, as alternate BACE1 substrates, also modulate myelination, and therefore provide a better understanding of the events regulating axonal myelination. In the peripheral nervous system, we identified that adult, but not juvenile KO mice, have lower densities of myelinated axons in their sciatic nerves while in the central nervous system, axons within both the optic nerves and corpus callosum of both KO mice were significantly hypomyelinated compared to wild-type (WT) controls. Biochemical analysis demonstrated significant increases in BACE1 and myelin oligodendrocyte glycoprotein and decreased NRG1 and proteolipid protein levels in both KO brain tissue. The acute cuprizone model of demyelination/remyelination revealed that whereas axons in the corpus callosum of WT and APLP2-KO mice underwent similar degrees of demyelination and subsequent remyelination, the myelinated callosal axons in APP-KO mice were less susceptible to cuprizone-induced demyelination and showed a failure in remyelination after cuprizone withdrawal. These data identified APP and APLP2 as modulators of normal myelination and demyelination/remyelination conditions. Deletion of APP and APLP2 identifies novel interplays between the BACE1 substrates in the regulation of myelination.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo , Remielinização/fisiologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Axônios/metabolismo , Corpo Caloso/metabolismo , Cuprizona , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Oligodendroglia/metabolismo , Nervo Óptico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...