Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 873271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462908

RESUMO

Long non-coding RNAs (lncRNAs) may play a role in psychiatric diseases including bipolar disorder (BD). We investigated mRNA-lncRNA co-expression patterns in neuronal-like cells treated with widely prescribed BD medications. The aim was to unveil insights into the complex mechanisms of BD medications and highlight potential targets for new drug development. Human neuronal-like (NT2-N) cells were treated with either lamotrigine, lithium, quetiapine, valproate or vehicle for 24 h. Genome-wide mRNA expression was quantified for weighted gene co-expression network analysis (WGCNA) to correlate the expression levels of mRNAs with lncRNAs. Functional enrichment analysis and hub lncRNA identification was conducted on key co-expressed modules associated with the drug response. We constructed lncRNA-mRNA co-expression networks and identified key modules underlying these treatments, as well as their enriched biological functions. Processes enriched in key modules included synaptic vesicle cycle, endoplasmic reticulum-related functions and neurodevelopment. Several lncRNAs such as GAS6-AS1 and MIR100HG were highlighted as driver genes of key modules. Our study demonstrates the key role of lncRNAs in the mechanism(s) of action of BD drugs. Several lncRNAs have been suggested as major regulators of medication effects and are worthy of further investigation as novel drug targets to treat BD.

2.
J Psychiatr Res ; 150: 105-112, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35366598

RESUMO

The molecular mechanism(s) underpinning the clinical efficacy of the current drugs for bipolar disorder (BD) are largely unknown. This study evaluated the transcriptional perturbations potentially playing roles in the therapeutic efficacy of four commonly prescribed psychotropic drugs used to treat BD. NT2-N cells were treated with lamotrigine, lithium, quetiapine, valproate or vehicle control for 24 h. Genome-wide mRNA expression was quantified by RNA-sequencing. Incorporating drug-induced gene expression profiles with BD-associated transcriptional changes from post-mortem brains, we identified potential therapeutic-relevant genes associated with both drug treatments and BD pathophysiology and focused on expression quantitative trait loci (eQTL) genes with genome-wide association with BD. Each eQTL gene was ranked based on its potential role in the therapeutic effect across multiple drugs. The expression of highest-ranked eQTL genes were measured by RT-qPCR to confirm their transcriptional changes observed in RNA-seq. We found 775 genes for which at least 2 drugs reversed expression levels relative to the differential expression in post-mortem brains. Pathway analysis identified enriched biological processes highlighting mitochondrial and endoplasmic reticulum function. Differential expression of SRPK2 and CHDH was confirmed by RT-qPCR following multiple-dose treatments. We pinpointed potential genes involved in the beneficial effects of drugs used for BD and their main associated biological pathways. CHDH, which encodes a mitochondrial protein, had a significant dose-responsive downregulation following treatment with increasing doses of quetiapine and lamotrigine, which in combination with the enriched mitochondrial pathways suggests potential therapeutic roles and demand more studies on mitochondrial involvement in BD to identify novel treatment targets.


Assuntos
Transtorno Bipolar , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Lamotrigina/farmacologia , Lamotrigina/uso terapêutico , Proteínas Serina-Treonina Quinases , Locos de Características Quantitativas/genética , Fumarato de Quetiapina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...