Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(19): 7503-7516, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35506481

RESUMO

A series of Zr-based metal-organic frameworks was prepared via the solvothermal route using sulfonic-rich linkers for the efficient capture of Pb2+ ions from aqueous medium. The factors affecting adsorption such as the solution pH, adsorbent dosage, contact time, adsorption isotherms, and mechanism were studied. Consequently, the maximum adsorption capacity of Pb2+ on the acidified VNU-23 was determined to be 617.3 mg g-1, which is much higher than that of previously reported adsorbents and MOF materials. Furthermore, the adsorption isotherms and kinetics of the Pb2+ ion are in good accordance with the Langmuir and pseudo-second-order kinetic model, suggesting that the uptake of Pb2+ is a chemisorption process. The reusability experiments demonstrated the facile recovery of the H+⊂VNU-23 material through immersion in an HNO3 solution (pH = 3), where its Pb2+ adsorption efficiency still remained at about 90% of the initial uptake over seven cycles. Remarkably, the adsorption mechanism was elucidated through a combined theoretical and experimental investigation. Accordingly, the Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy connected to energy-dispersive X-ray mapping (SEM-EDX-mapping), and X-ray photoelectron spectroscopy (XPS) analysis of the Pb⊂VNU-23 sample and comparison with H+⊂VNU-23 confirmed that the electrostatic interaction occurs via the interaction between the SO3- moieties in the framework and the Pb2+ ion, leading to the formation of a Pb-O bond. In addition, the density functional theory (DFT) calculations showed the effective affinity of the MOF adsorbent toward the Pb2+ ion via the strong driving force mentioned in the experimental studies. Thus, these findings illustrate that H+⊂VNU-23 can be employed as a potential adsorbent to eliminate Pb2+ ions from wastewater.

2.
J Food Prot ; 73(1): 92-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20051210

RESUMO

Cinnamic acid (CA), a naturally occurring organic acid found in fruits and spices, has antimicrobial activity against spoilage and pathogenic bacteria, but low aqueous solubility limits its use. The purpose of this study was to determine the effectiveness of solubility-enhancing alpha-cyclodextrin-CA inclusion complexes against Escherichia coli O157:H7 and Salmonella enterica serovars suspended in apple cider or orange juice at two different incubation temperatures (4 and 26 degrees Celsius). Two concentrations (400 and 1,000 mg/liter) of alpha-cyclodextrin-CA inclusion complex were aseptically added to apple cider inoculated with E. coli O157:H7 (7 log CFU/ml) and orange juice inoculated with a cocktail of six Salmonella enterica serovars (7 log CFU/ml). Samples were extracted at 0 min, at 2 min, and at 24-h intervals for 7 days, serially diluted in 0.1 % peptone, spread plated in duplicate onto tryptic soy agar, and incubated at 35 degrees Celsius for 24 h. Populations of E. coli O157:H7 in apple cider were significantly reduced (P < or = 0.05) during the 7-day sampling period in all solutions regardless of temperature. Compared with the controls, populations were significantly reduced by the addition of 400 and 1,000 mg/liter inclusion complex, but reductions were not significantly different (P > or = 0.05) between the two treatment groups (400 and 1,000 mg/liter). Salmonella was significantly reduced in all solutions regardless of temperature. There were significant differences between the control and each inclusion complex concentration at 4 and 26 degrees Celsius. Coupled with additional processing steps, alpha-cyclodextrin-CA inclusion complexes may provide an alternative to traditional heat processes.


Assuntos
Cinamatos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Conservação de Alimentos/métodos , Frutas/microbiologia , Salmonella enterica/efeitos dos fármacos , alfa-Ciclodextrinas/farmacologia , Antibacterianos/farmacologia , Bebidas/análise , Bebidas/microbiologia , Citrus sinensis/microbiologia , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Escherichia coli O157/crescimento & desenvolvimento , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Malus/microbiologia , Salmonella enterica/crescimento & desenvolvimento , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...