Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892267

RESUMO

Food safety and quality are major concerns in the food industry. Despite numerous studies, polyethylene remains one of the most used materials for packaging due to industry reluctance to invest in new technologies and equipment. Therefore, modifications to the current materials are easier to implement than adopting whole new solutions. Antibacterial activity can be induced in low-density polyethylene films only by adding antimicrobial agents. ZnO nanoparticles are well known for their strong antimicrobial activity, coupled with low toxicity and UV shielding capability. These characteristics recommend ZnO for the food industry. By incorporating such safe and dependable antimicrobial agents in the polyethylene matrix, we have obtained composite films able to inhibit microorganisms' growth that can be used as packaging materials. Here we report the obtaining of highly homogenous composite films with up to 5% ZnO by a melt mixing process at 150 °C for 10 min. The composite films present good transparency in the visible domain, permitting consumers to visualize the food, but have good UV barrier properties. The composite films exhibit good antimicrobial and antibiofilm activity from the lowest ZnO composition (1%), against both Gram-positive and Gram-negative bacterial strains. The homogenous dispersion of ZnO nanoparticles into the polyethylene matrix was assessed by Fourier transform infrared microscopy and scanning electron microscopy. The optimal mechanical barrier properties were obtained for composition with 3% ZnO. The thermal analysis indicates that the addition of ZnO nanoparticles has increased thermal stability by more than 100 °C. The UV-Vis spectra indicate a low transmittance in the UV domain, lower than 5%, making the films suitable for blocking photo-oxidation processes. The obtained films proved to be efficient packaging films, successfully preserving plum (Rome) tomatoes for up to 14 days.


Assuntos
Embalagem de Alimentos , Polietileno , Solanum lycopersicum , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Embalagem de Alimentos/métodos , Polietileno/química , Solanum lycopersicum/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Biofilmes/efeitos dos fármacos
2.
Polymers (Basel) ; 15(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688255

RESUMO

The aim of the present study was to obtain antimicrobial dressings from bacterial cellulose loaded with nutmeg and of fir needle essential oils. The attractive properties of BC, such as biocompatibility, good physicochemical and mechanical stability, and high water absorption, led to the choice of this material to be used as a support. Essential oils have been added to provide antimicrobial properties to these dressings. The results confirmed the presence of oils in the structure of the bacterial cellulose membrane and the ability of the materials to inhibit the adhesion of Staphylococcus aureus and Escherichia coli. By performing antibacterial tests on membranes loaded with fir needle essential oil, we demonstrated the ability of these membranes to inhibit bacterial adhesion to the substrate. The samples loaded with nutmeg essential oil exhibited the ability to inhibit the adhesion of bacteria to the surface of the materials, with the 5% sample showing a significant decrease. The binding of essential oils to the membrane was confirmed by thermal analysis and infrared characterization.

3.
Materials (Basel) ; 15(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431468

RESUMO

In this study, two types of mesoporous silica with different pore structures and volumes were synthesized by the soft-templating method. The two types of mesoporous silica, type MCM-41 and MCM-48, were loaded with three polyphenols-caffeic acid, p-coumaric acid and trans-ferulic acid-in the same ratio of mesoporous silica:polyphenol (1:0.4 w/w). The materials obtained were characterized from a morphological and structural point of view through different analysis techniques. Through X-ray diffraction (XRD), the crystallization plane and the ordered structure of the mesoporous silica were observed. The difference between the two types of materials containing MCM-41 and MCM-48 was observed through the different morphologies of the silica particles through scanning electron microscopy (SEM) and also through the Brunauer-Emmet-Teller (BET) analysis, that the surface areas and volumes of pores was different between the two types of mesoporous silica, and, after loading with polyphenols, the values were reduced. The characteristic bands of silica and of polyphenols were easily observed by Fourier-transform infrared spectroscopy (FTIR), and, through thermogravimetric analysis (TGA), the residual mass was determined and the estimated amount of polyphenol in the materials and the efficient loading of mesoporous silica with polyphenols could be determined. The in vitro study was performed in two types of simulated biological fluids with different pH-simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The obtained materials could be used in various biomedical applications as systems with controlled release of natural polyphenols and the most suitable application could be as food supplements especially when a mixture of such materials is used or when the polyphenols are co-loaded within the mesoporous silica.

4.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805899

RESUMO

The ability of TiO2 to generate reactive oxygen species under UV radiation makes it an efficient candidate in antimicrobial studies. In this context, the preparation of TiO2 microparticles coated with Ca- and Cu-based composite layers over which Cu(II), Cu(I), and Cu(0) species were identified is presented here. The obtained materials were characterized by a wide range of analytical methods, such as X-ray diffraction, electron microscopy (TEM, SEM), X-ray photoelectron (XPS), and UV-VIS spectroscopy. The antimicrobial efficiency was evaluated using qualitative and quantitative standard methods and standard clinical microbial strains. A significant aspect of this composite is that the antimicrobial properties were evidenced both in the presence and absence of the light, as result of competition between photo and electrical effects. However, the antibacterial effect was similar in darkness and light for all samples. Because no photocatalytic properties were found in the absence of copper, the results sustain the antibacterial effect of the electric field (generated by the electrostatic potential of the composite layer) both under the dark and in light conditions. In this way, the composite layers supported on the TiO2 microparticles' surface can offer continuous antibacterial protection and do not require the presence of a permanent light source for activation. However, the antimicrobial effect in the dark is more significant and is considered to be the result of the electric field effect generated on the composite layer.


Assuntos
Luz , Titânio , Antibacterianos/química , Antibacterianos/farmacologia , Catálise , Microscopia Eletrônica de Varredura , Titânio/química , Titânio/farmacologia
5.
Nanomaterials (Basel) ; 12(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630870

RESUMO

This paper aimed to develop two types of support materials with a mesoporous structure of mobile crystalline matter (known in the literature as MCM, namely MCM-41 and MCM-48) and to load them with gallic acid. Soft templating methodology was chosen for the preparation of the mesoporous structures-the cylindrical micelles with certain structural characteristics being formed due to the hydrophilic and hydrophobic intermolecular forces which occur between the molecules of the surfactants (cetyltrimethylammonium bromide-CTAB) when a minimal micellar ionic concentration is reached. These mesoporous supports were loaded with gallic acid using three different types of MCM-gallic acid ratios (1:0.41; 1:0.82 and 1:1.21)-and their characterizations by FTIR, SEM, XRD, BET and drug release were performed. It is worth mentioning that the loading was carried out using a vacuum-assisted methodology: the mesoporous materials are firstly kept under vacuum at ~0.1 barr for 30 min followed by the addition of the polyphenol solutions. The concentration of the solutions was adapted such that the final volume covered the wet mesoporous support and-in this case-upon reaching normal atmospheric pressure, the solution was pushed inside the pores, and thus the polyphenols were mainly loaded inside the pores. Based on the SBET data, it can be seen that the specific surface area decreased considerably with the increasing ratio of gallic acid; the specific surface area decreased 3.07 and 4.25 times for MCM-41 and MCM-48, respectively. The sample with the highest polyphenol content was further evaluated from a biological point of view, alone or in association with amoxicillin administration. As expected, the MCM-41 and MCM-48 were not protective against infections-but, due to the loading of the gallic acid, a potentiated inhibition was recorded for the tested gram-negative bacterial strains. Moreover, it is important to mention that these systems can be efficient solutions for the recovery of the gut microbiota after exposure to antibiotics, for instance.

6.
Pharmaceutics ; 13(7)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34371712

RESUMO

The petroleum-based materials could be replaced, at least partially, by biodegradable packaging. Adding antimicrobial activity to the new packaging materials can also help improve the shelf life of food and diminish the spoilage. The objective of this research was to obtain a novel antibacterial packaging, based on alginate as biodegradable polymer. The antibacterial activity was induced to the alginate films by adding various amounts of ZnO nanoparticles loaded with citronella (lemongrass) essential oil (CEO). The obtained films were characterized, and antibacterial activity was tested against two Gram-negative (Escherichia coli and Salmonella Typhi) and two Gram-positive (Bacillus cereus and Staphylococcus aureus) bacterial strains. The results suggest the existence of synergy between antibacterial activities of ZnO and CEO against all tested bacterial strains. The obtained films have a good antibacterial coverage, being efficient against several pathogens, the best results being obtained against Bacillus cereus. In addition, the films presented better UV light barrier properties and lower water vapor permeability (WVP) when compared with a simple alginate film. The preliminary tests indicate that the alginate films with ZnO nanoparticles and CEO can be used to successfully preserve the cheese. Therefore, our research evidences the feasibility of using alginate/ZnO/CEO films as antibacterial packaging for cheese in order to extend its shelf life.

7.
Foods ; 9(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291604

RESUMO

New packaging materials based on biopolymers are gaining increasing attention due to many advantages like biodegradability or existence of renewable sources. Grouping more antimicrobials agents in the same packaging can create a synergic effect, resulting in either a better antimicrobial activity against a wider spectrum of spoilage agents or a lower required quantity of antimicrobials. In the present work, we obtained a biodegradable antimicrobial film that can be used as packaging material for food. Films based on chitosan as biodegradable polymer, with ZnO and Ag nanoparticles as filler/antimicrobial agents were fabricated by a casting method. The nanoparticles were loaded with citronella essential oil (CEO) in order to enhance the antimicrobial activity of the nanocomposite films. The tests made on Gram-positive, Gram-negative, and fungal strains indicated a broad-spectrum antimicrobial activity, with inhibition diameters of over 30 mm for bacterial strains and over 20 mm for fungal strains. The synergic effect was evidenced by comparing the antimicrobial results with chitosan/ZnO/CEO or chitosan/Ag/CEO simple films. According to the literature and our preliminary studies, these formulations are suitable as coating for fruits. The obtained nanocomposite films presented lower water vapor permeability values when compared with the chitosan control film. The samples were characterized by SEM, fluorescence and UV-Vis spectroscopy, FTIR spectroscopy and microscopy, and thermal analysis.

8.
Materials (Basel) ; 13(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266076

RESUMO

One of the main problems faced by libraries, archives and collectors is the mold degradation of the paper-based documents, books, artworks etc. Microfungi (molds) emerge in regular storage conditions of such items (humidity, usually over 50%, and temperatures under 21 °C). If the removal of the visible mycelium is relatively easy, there is always the problem of the subsequent appearance of mold as the spores remain trapped in the cellulosic, fibrillary texture, which acts as a net. Moreover, due to improper hand hygiene bacteria contamination, old books could represent a source of biohazard, being colonized with human pathogens. An easy and accessible method of decontamination, which could offer long term protection is therefore needed. Here, we present a facile use of the ZnO nanopowders as antimicrobial agents, suitable for cellulose-based products, conferring an extended antibacterial and anti-microfungal effect. The proposed method does not adversely impact on the quality of the cellulose documents and could be efficiently used for biodegradation protection.

9.
Molecules ; 25(18)2020 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-32899912

RESUMO

The use of bacterial cellulose (BC) in skin wound treatment is very attractive due to its unique characteristics. These dressings' wet environment is an important feature that ensures efficient healing. In order to enhance the antimicrobial performances, bacterial-cellulose dressings were loaded with amoxicillin and bacitracin as antibacterial agents. Infrared characterization and thermal analysis confirmed bacterial-cellulose binding to the drug. Hydration capacity showed good hydrophilicity, an efficient dressing's property. The results confirmed the drugs' presence in the bacterial-cellulose dressing's structure as well as the antimicrobial efficiency against Staphylococcus aureus and Escherichia coli. The antimicrobial assessments were evaluated by contacting these dressings with the above-mentioned bacterial strains and evaluating the growth inhibition of these microorganisms.


Assuntos
Amoxicilina/farmacologia , Antibacterianos/farmacologia , Bacitracina/farmacologia , Bactérias/química , Celulose/farmacologia , Celulose/ultraestrutura , Contagem de Colônia Microbiana , Escherichia coli/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Temperatura , Água/química
10.
Mater Sci Eng C Mater Biol Appl ; 99: 405-416, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889715

RESUMO

Stents are important medical devices used to increase the quality and life expectancy of patients with heart diseases and stroke, leading causes of death, worldwide. In order to minimize the risk of restenosis, different coating on bare metal stents (BMS) such as polymer coatings; titanium dioxide, titanium nitride or titanium oxynitride coatings; carbon coatings and others are used. The aim of this work was to develop novel stents coated with titanium oxynitride (TiOxNy) with optimal chemical, mechanical and biological properties having possibly good coverage rate of inner and outer stent surfaces. The improvement should be achieved by optimization and development of a magnetron sputtering deposition technology. The goal of the study is understanding of the existing potential for improvement of the deposition technology and the coating quality itself. For this study, different O2/N2 ratios, meaning 1/2, 1/5 and 1/10 (the ratios of reagent gasses are given for the values of mass flows into the chamber) has been selected. Stability in simulated body fluids, surface morphology and protein adsorption as well as preliminary cytotoxic behaviour of the samples on HUVEC cells has been analysed. SEM experiments have shown the potential in the improvement of coating-stent adhesion by all samples. TiOxNy 1:5 samples were found to have the lowest adsorption, the smoothest surface morphology and the smallest rate of salt deposition from simulated body fluids (SBFs). This kind of surface has been recommended for further optimization and application.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Stents , Titânio/farmacologia , Corrosão , Técnicas Eletroquímicas , Eletrodos , Elementos Químicos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Plasma/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
11.
Mater Sci Eng C Mater Biol Appl ; 37: 374-82, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24582263

RESUMO

Titania nanotubes (TNTs) were prepared by anodization on different substrates (titanium, Ti6Al4V and Ti6Al7Nb alloys) in ethylene glycol and glycerol. The influence of the applied potential and processing time on the nanotube diameter and length is analyzed. The as-formed nanotube layers are amorphous but they become crystalline when subjected to subsequent thermal treatment in air at 550°C; TNT layers grown on titanium and Ti6Al4V alloy substrates consist of anatase and rutile, while those grown on Ti6Al7Nb alloy consist only of anatase. The nanotube layers grown on Ti6Al7Nb alloy are less homogeneous, with supplementary islands of smaller diameter nanotubes, spread across the surface. Better adhesion and proliferation of osteoblasts was found for the nanotubes grown on all three substrates by comparison to an unprocessed titanium plate. The sensitivity towards bovine alkaline phosphatase was investigated mainly by electrochemical impedance spectroscopy in relation to the crystallinity, the diameter and the nature of the anodization electrolyte of the TNT/Ti samples. The measuring capacity of the annealed nanotubes of 50nm diameter grown in glycerol was demonstrated and the corresponding calibration curve was built for the concentration range of 0.005-0.1mg/mL.


Assuntos
Fosfatase Alcalina/análise , Espectroscopia Dielétrica , Nanotubos/química , Titânio/química , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/normas , Ligas , Animais , Técnicas Biossensoriais , Calibragem , Bovinos , Linhagem Celular , Proliferação de Células , Cristalização , Espectroscopia Dielétrica/normas , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...