Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(2): e0253323, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132833

RESUMO

Plants harbor complex and highly diverse fungal endophyte communities (FECs), making it difficult to evaluate the functional role of individual taxa, subsets of the community, or the FEC as a whole. To reduce the complexity of this system, we aimed to produce fungi-null wheat (Triticum aestivum) plants. To this end, we treated seeds with heat and fungicides and generated plants from rescued embryos and callus tissue. A culture-based approach and reverse transcription PCR analysis were negative, indicating that all treatments produced plants apparently free of fungi. However, the analysis of DNA using digital droplet PCR and next-generation sequencing revealed that tissues from all treatments retained low levels but diversity-rich FECs. While the FECs varied in composition across treatments and tissues, they all included core taxa of the mycobiome. The reduced fungal biomass, along with the changes in FEC composition, negatively affected plant development, supporting a FEC contribution to proper plant development and fitness. Our discovery that a large part of the FEC cannot be separated from plants and can be transmitted through seeds and tissue culture calls for reevaluation of particular microbiome paradigms, such as core taxa concepts, transmission modes, and functional species.IMPORTANCEThe native microbiome in a given plant must be considered when evaluating the effect of a single taxon or synthetic community. The pre-existing microbiome can interact with artificially added microbial cargo, which affects the final outcome. Such issues can be at least partially solved by the use of endophyte-free plants, which provide a clean background that should be useful in determining the effect of a single taxon, taxa combinations, or the entire microbiome on plant performance. Previous reports regarded plants as endophyte-free or axenic by the lack of fungal growth on culture media or the generation of plants from tissue cultures. We showed here that while fungi could not be isolated from fungicide-treated or tissue culture-regenerated plants, nevertheless, all plants contained rich fungal endophyte communities; namely, it was impossible to create fungi-free wheat plants. Our results call for rethinking fundamental microbiome-related concepts, such as core taxa, transmission mode, and functional species.


Assuntos
Microbiota , Micobioma , Endófitos/genética , Triticum/microbiologia , Plantas/microbiologia , Fungos
2.
mBio ; 14(4): e0107723, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37409814

RESUMO

Botrytis cinerea causes gray mold disease in leading crop plants. The disease develops only at cool temperatures, but the fungus remains viable in warm climates and can survive periods of extreme heat. We discovered a strong heat priming effect in which the exposure of B. cinerea to moderately high temperatures greatly improves its ability to cope with subsequent, potentially lethal temperature conditions. We showed that priming promotes protein solubility during heat stress and discovered a group of priming-induced serine-type peptidases. Several lines of evidence, including transcriptomics, proteomics, pharmacology, and mutagenesis data, link these peptidases to the B. cinerea priming response, highlighting their important roles in regulating priming-mediated heat adaptation. By imposing a series of sub-lethal temperature pulses that subverted the priming effect, we managed to eliminate the fungus and prevent disease development, demonstrating the potential for developing temperature-based plant protection methods by targeting the fungal heat priming response. IMPORTANCE Priming is a general and important stress adaptation mechanism. Our work highlights the importance of priming in fungal heat adaptation, reveals novel regulators and aspects of heat adaptation mechanisms, and demonstrates the potential of affecting microorganisms, including pathogens through manipulations of the heat adaptation response.

3.
BMC Genomics ; 16: 8, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25608961

RESUMO

BACKGROUND: Members of the fungal genus Trichoderma directly antagonize soil-borne fungal pathogens, and an increasing number of species are studied for their potential in biocontrol of plant pathogens in agriculture. Some species also colonize plant roots, promoting systemic resistance. The Trichoderma-root interaction is hosted by a wide range of plant species, including monocots and dicots. RESULTS: To test the hypothesis that gene expression by the fungal partner in this beneficial interaction is modulated by the plant, Trichoderma virens was co-cultured with maize or tomato in a hydroponic system allowing interaction with the roots. The transcriptomes for T. virens alone were compared with fungus-inoculated tomato or maize roots by hybridization on microarrays of 11645 unique oligonucleotides designed from the predicted protein-coding gene models. Transcript levels of 210 genes were modulated by interaction with roots. Almost all were up-regulated. Glycoside hydrolases and transporters were highly represented among transcripts induced by co-culture with roots. Of the genes up-regulated on either or both host plants, 35 differed significantly in their expression levels between maize and tomato. Ten of these were expressed higher in the fungus in co-culture with tomato roots than with maize. Average transcript levels for these genes ranged from 1.9 fold higher on tomato than on maize to 60.9 fold for the most tomato-specific gene. The other 25 host-specific transcripts were expressed more strongly in co-culture with maize than with tomato. Average transcript levels for these genes were 2.5 to 196 fold higher on maize than on tomato. CONCLUSIONS: Based on the relevant role of Trichoderma virens as a biological control agent this study provides a better knowledge of its crosstalk with plants in a host-specific manner. The differentially expressed genes encode proteins belonging to several functional classes including enzymes, transporters and small secreted proteins. Among them, glycoside hydrolases and transporters are highlighted by their abundance and suggest an important factor in the metabolism of host cell walls during colonization of the outer root layers. Host-specific gene expression may contribute to the ability of T. virens to colonize the roots of a wide range of plant species.


Assuntos
Interações Hospedeiro-Patógeno , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Transcriptoma , Trichoderma/fisiologia , Zea mays/microbiologia , Zea mays/fisiologia , Análise por Conglomerados , Genes Reporter , Glicosídeo Hidrolases/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Microscopia Confocal , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Regiões Promotoras Genéticas , Trichoderma/genética , Zea mays/genética , Zea mays/metabolismo
4.
BMC Genomics ; 14: 138, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23445374

RESUMO

BACKGROUND: In fungi, environmental pH is an important signal for development, and successful host colonization depends on homeostasis. Surprisingly, little is known regarding the role of pH in fungal-fungal interactions. Species of Trichoderma grow as soil saprobes but many are primarily mycotrophic, using other fungi as hosts. Therefore, Trichoderma spp. are studied for their potential in biocontrol of plant diseases. Particularly in alkaline soil, pH is a critical limiting factor for these biofungicides, whose optimal growth pH is 4-6. Gaining an understanding of pH adaptability is an important step in broadening the activity spectrum of these economically important fungi. RESULTS: We studied the pH-responsive transcription factor PacC by gene knockout and by introduction of a constitutively active allele (pacCc). ΔpacC mutants exhibited reduced growth at alkaline pH, while pacCc strains grew poorly at acidic pH. In plate confrontation assays ΔpacC mutants showed decreased ability to compete with the plant pathogens Rhizoctonia solani and Sclerotium rolfsii. The pacCc strain exhibited an overgrowth of R. solani that was comparable to the wild type, but was unable to overgrow S. rolfsii. To identify genes whose expression is dependent on pH and pacC, we designed oligonucleotide microarrays from the transcript models of the T. virens genome, and compared the transcriptomes of wild type and mutant cultures exposed to high or low pH. Transcript levels from several functional classes were dependent on pacC, on pH, or on both. Furthermore, the expression of a set of pacC-dependent genes was increased in the constitutively-active pacCc strain, and was pH-independent in some, but not all cases. CONCLUSIONS: PacC is important for biocontrol-related antagonism of other fungi by T. virens. As much as 5% of the transcriptome is pH-dependent, and of these genes, some 25% depend on pacC. Secondary metabolite biosynthesis and ion transport are among the relevant gene classes. We suggest that ΔpacC mutants may have lost their full biocontrol potential due to their inability to adapt to alkaline pH, to perceive ambient pH, or both. The results raise the novel possibility of genetically manipulating Trichoderma in order to improve adaptability and biocontrol at alkaline pH.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Transcriptoma , Trichoderma/genética , Alelos , Sequência de Bases , Basidiomycota/crescimento & desenvolvimento , Sítios de Ligação , Análise por Conglomerados , DNA/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Concentração de Íons de Hidrogênio , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Doenças das Plantas/microbiologia , Rhizoctonia/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trichoderma/crescimento & desenvolvimento
5.
Biochem Biophys Res Commun ; 350(3): 716-22, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17027919

RESUMO

A novel gene, MRSP1 (MAP kinase repressed secreted protein 1) is strongly overexpressed in the tmkA MAPK mutant of the biocontrol fungus Trichoderma virens. Transcriptional regulation of MRSP1 is determined by presence or absence of TmkA, rather than by light or sporulation, making it a molecular marker for the unusual, negative, regulation by TmkA. The predicted protein is 15.9 kDa, has a secretory signal, and the four-cysteine pattern, C-X29-CP(G)C-X31-C, may define a new cysteine-rich motif. This is a novel protein with functions not known from any other organism. Conservation in ascomycete, basidiomycete, and Dictyostelium homologs, as well as tight MAPK regulation, might indicate important cellular functions.


Assuntos
Proteínas Fúngicas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Trichoderma/fisiologia , Células Cultivadas , Regulação para Baixo , Proteínas Fúngicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA