Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(10): e0205075, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30379836

RESUMO

Retention forestry aims to mitigate impacts of native forestry on biodiversity, but data are limited on its effectiveness for threatened species. We used acoustics to investigate the resilience of a folivorous marsupial, the koala Phascolarctos cinereus, to timber harvesting where a key mitigation practice is landscape exclusion of harvesting. We deployed acoustic recorders at 171 sites to record male bellows (~14,640 hours) for use in occupancy modelling and for comparisons of bellow rate (bellows night-1). Surveys targeted modelled medium-high quality habitat, with sites stratified by time since logging and logging intensity, including old growth as a reference. After scanning recordings with software to identify koala bellows, we found a high probability of detection (~0.45 per night), but this varied with minimum temperature and recorder type. Naïve occupancy was ~ 64% across a broad range of forests, which was at least five times more than expected based on previous surveys using alternative methods. After accounting for imperfect detection, probability of occupancy was influenced by elevation (-ve), cover of important browse trees (+ve), landscape NDVI (+ve) and extent of recent wildfire (-ve, but minor effect). Elevation was the most influential variable, though the relationship was non-linear and low occupancy was most common at tableland elevations (> 1000 m). Neither occupancy nor bellow rate were influenced by timber harvesting intensity, time since harvesting or local landscape extent of harvesting or old growth. Extrapolation of occupancy across modelled habitat indicates that the hinterland forests of north-east NSW support a widespread, though likely low density koala population that is considerably larger than previously estimated. Retention forestry has a significant role to play in mitigating harvesting impacts on biodiversity, including for forest specialists, but localised studies are needed to optimise prescriptions for koalas.


Assuntos
Comunicação Animal , Espécies em Perigo de Extinção , Agricultura Florestal , Modelos Biológicos , Reconhecimento Automatizado de Padrão , Phascolarctidae , Acústica , Altitude , Distribuição Animal , Animais , Florestas , Masculino , New South Wales , Parques Recreativos , Densidade Demográfica , Software , Temperatura , Árvores , Incêndios Florestais
2.
Conserv Biol ; 32(1): 205-215, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28612939

RESUMO

There is global concern about tropical forest degradation, in part, because of the associated loss of biodiversity. Communities and indigenous people play a fundamental role in tropical forest management and are often efficient at preventing forest degradation. However, monitoring changes in biodiversity due to degradation, especially at a scale appropriate to local tropical forest management, is plagued by difficulties, including the need for expert training, inconsistencies across observers, and lack of baseline or reference data. We used a new biodiversity remote-sensing technology, the recording of soundscapes, to test whether the acoustic saturation of a tropical forest in Papua New Guinea decreases as land-use intensity by the communities that manage the forest increases. We sampled soundscapes continuously for 24 hours at 34 sites in different land-use zones of 3 communities. Land-use zones where forest cover was fully retained had significantly higher soundscape saturation during peak acoustic activity times (i.e., dawn and dusk chorus) compared with land-use types with fragmented forest cover. We conclude that, in Papua New Guinea, the relatively simple measure of soundscape saturation may provide a cheap, objective, reproducible, and effective tool for monitoring tropical forest deviation from an intact state, particularly if it is used to detect the presence of intact dawn and dusk choruses.


Assuntos
Conservação dos Recursos Naturais , Florestas , Biodiversidade , Humanos , Papua Nova Guiné , Tecnologia de Sensoriamento Remoto , Clima Tropical
3.
Ecol Evol ; 7(18): 7475-7489, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28944032

RESUMO

Species distribution models have great potential to efficiently guide management for threatened species, especially for those that are rare or cryptic. We used MaxEnt to develop a regional-scale model for the koala Phascolarctos cinereus at a resolution (250 m) that could be used to guide management. To ensure the model was fit for purpose, we placed emphasis on validating the model using independently-collected field data. We reduced substantial spatial clustering of records in coastal urban areas using a 2-km spatial filter and by modeling separately two subregions separated by the 500-m elevational contour. A bias file was prepared that accounted for variable survey effort. Frequency of wildfire, soil type, floristics and elevation had the highest relative contribution to the model, while a number of other variables made minor contributions. The model was effective in discriminating different habitat suitability classes when compared with koala records not used in modeling. We validated the MaxEnt model at 65 ground-truth sites using independent data on koala occupancy (acoustic sampling) and habitat quality (browse tree availability). Koala bellows (n = 276) were analyzed in an occupancy modeling framework, while site habitat quality was indexed based on browse trees. Field validation demonstrated a linear increase in koala occupancy with higher modeled habitat suitability at ground-truth sites. Similarly, a site habitat quality index at ground-truth sites was correlated positively with modeled habitat suitability. The MaxEnt model provided a better fit to estimated koala occupancy than the site-based habitat quality index, probably because many variables were considered simultaneously by the model rather than just browse species. The positive relationship of the model with both site occupancy and habitat quality indicates that the model is fit for application at relevant management scales. Field-validated models of similar resolution would assist in guiding management of conservation-dependent species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...