Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
IEEE Trans Biomed Eng ; 57(6): 1306-17, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20172789

RESUMO

A well-known reading pitfall in computed tomography (CT) colonography is posed by artifacts at T-junctions, i.e., locations where air-fluid levels interface with the colon wall. This paper presents a scale-invariant method to determine material fractions in voxels near such T-junctions. The proposed electronic cleansing method particularly improves the segmentation at those locations. The algorithm takes a vector of Gaussian derivatives as input features. The measured features are made invariant to the orientation-dependent apparent scale of the data and normalized in a way to obtain equal noise variance. A so-called parachute model is introduced that maps Gaussian derivatives onto material fractions near T-junctions. Projection of the noisy derivatives onto the model yields improved estimates of the true, underlying feature values. The method is shown to render an accurate representation of the object boundary without artifacts near junctions. Therefore, it enhances the reading of CT colonography in a 3-D display mode.


Assuntos
Algoritmos , Colonografia Tomográfica Computadorizada/métodos , Imageamento Tridimensional/métodos , Modelos Biológicos , Reconhecimento Automatizado de Padrão/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
IEEE Trans Med Imaging ; 29(1): 120-31, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19666332

RESUMO

We present a computer-aided detection (CAD) system for computed tomography colonography that orders the polyps according to clinical relevance. The CAD system consists of two steps: candidate detection and supervised classification. The characteristics of the detection step lead to specific choices for the classification system. The candidates are ordered by a linear logistic classifier (logistic regression) based on only three features: the protrusion of the colon wall, the mean internal intensity, and a feature to discard detections on the rectal enema tube. This classifier can cope with a small number of polyps available for training, a large imbalance between polyps and non-polyp candidates, a truncated feature space, unbalanced and unknown misclassification costs, and an exponential distribution with respect to candidate size in feature space. Our CAD system was evaluated with data sets from four different medical centers. For polyps larger than or equal to 6 mm we achieved sensitivities of respectively 95%, 85%, 85%, and 100% with 5, 4, 5, and 6 false positives per scan over 86, 48, 141, and 32 patients. A cross-center evaluation in which the system is trained and tested with data from different sources showed that the trained CAD system generalizes to data from different medical centers and with different patient preparations. This is essential to application in large-scale screening for colorectal polyps.


Assuntos
Pólipos do Colo/diagnóstico , Colonografia Tomográfica Computadorizada/métodos , Processamento de Imagem Assistida por Computador/métodos , Modelos Logísticos , Reconhecimento Automatizado de Padrão/métodos , Pólipos do Colo/patologia , Humanos , Sensibilidade e Especificidade
3.
Eur Radiol ; 20(6): 1404-13, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20033180

RESUMO

OBJECTIVE: To assess the variability and systematic differences in polyp measurements on optical colonoscopy and CT colonography. MATERIALS: Gastroenterologists measured 51 polyps by visual estimation, forceps comparison and linear probe. CT colonography observers randomly assessed polyp size two-dimensionally (abdominal and intermediate window) and three-dimensionally (manually and semi-automatically). Linear mixed models were used to assess the variability and systematic differences between CT colonography and optical colonoscopy techniques. RESULTS: The variability of forceps and linear probe measurements was comparable and both showed less variability than measurement by visual assessment. Measurements by linear probe were 0.7 mm smaller than measurements by visual assessment or by forceps. The variability of all CT colonography techniques was lower than for measurements by forceps or visual assessment and sometimes lower (only 2D intermediate window and manual 3D) compared with measurements by linear probe. All CT colonography measurements judged polyps to be larger than optical colonoscopy, with differences ranging from 0.7 to 2.3 mm. CONCLUSION: A linear probe does not reduce the measurement variability of endoscopists compared with the forceps. Measurement differences between observers on CT colonography were usually smaller than at optical colonoscopy. Polyps appeared larger when using various CT colonography techniques than when measured during optical colonoscopy.


Assuntos
Pólipos do Colo/diagnóstico , Colonografia Tomográfica Computadorizada/métodos , Colonoscopia/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
IEEE Trans Biomed Eng ; 57(3): 675-84, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19884071

RESUMO

Computerized tomographic colonography is a minimally invasive technique for the detection of colorectal polyps and carcinoma. Computer-aided diagnosis (CAD) schemes are designed to help radiologists locating colorectal lesions in an efficient and accurate manner. Large lesions are often initially detected as multiple small objects, due to which such lesions may be missed or misclassified by CAD systems. We propose a novel method for automated detection and segmentation of all large lesions, i.e., large polyps as well as carcinoma. Our detection algorithm is incorporated in a classical CAD system. Candidate detection comprises preselection based on a local measure for protrusion and clustering based on geodesic distance. The generated clusters are further segmented and analyzed. The segmentation algorithm is a thresholding operation in which the threshold is adaptively selected. The segmentation provides a size measurement that is used to compute the likelihood of a cluster to be a large lesion. The large lesion detection algorithm was evaluated on data from 35 patients having 41 large lesions (19 of which malignant) confirmed by optical colonoscopy. At five false positive (FP) per scan, the classical system achieved a sensitivity of 78%, while the system augmented with the large lesion detector achieved 83% sensitivity. For malignant lesions, the performance at five FP/scan was increased from 79% to 95%. The good results on malignant lesions demonstrate that the proposed algorithm may provide relevant additional information for the clinical decision process.


Assuntos
Neoplasias do Colo/diagnóstico , Colonografia Tomográfica Computadorizada/métodos , Diagnóstico por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos , Neoplasias do Colo/patologia , Humanos , Estadiamento de Neoplasias
5.
Eur Radiol ; 19(8): 1939-50, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19301011

RESUMO

The purpose of this study was to compare a primary uncleansed 2D and a primary electronically cleansed 3D reading strategy in CTC in limited prepped patients. Seventy-two patients received a low-fibre diet with oral iodine before CT-colonography. Six novices and two experienced observers reviewed both cleansed and uncleansed examinations in randomized order. Mean per-polyp sensitivity was compared between the methods by using generalized estimating equations. Mean per-patient sensitivity, and specificity were compared using the McNemar test. Results were stratified for experience (experienced observers versus novice observers). Mean per-polyp sensitivity for polyps 6 mm or larger was significantly higher for novices using cleansed 3D (65%; 95%CI 57-73%) compared with uncleansed 2D (51%; 95%CI 44-59%). For experienced observers there was no significant difference. Mean per-patient sensitivity for polyps 6 mm or larger was significantly higher for novices as well: respectively 75% (95%CI 70-80%) versus 64% (95%CI 59-70%). For experienced observers there was no statistically significant difference. Specificity for both novices and experienced observers was not significantly different. For novices primary electronically cleansed 3D is better for polyp detection than primary uncleansed 2D.


Assuntos
Catárticos , Colonografia Tomográfica Computadorizada/métodos , Imageamento Tridimensional/métodos , Pólipos Intestinais/diagnóstico por imagem , Competência Profissional , Idoso , Catárticos/administração & dosagem , Meios de Contraste/administração & dosagem , Feminino , Humanos , Intestinos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Eur Radiol ; 19(4): 941-50, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18982331

RESUMO

We prospectively determined whether computer-aided detection (CAD) could improve the performance characteristics of computed tomography colonography (CTC) in a population of increased risk for colorectal cancer. Therefore, we included 170 consecutive patients that underwent both CTC and colonoscopy. All findings >or=6 mm were evaluated at colonoscopy by segmental unblinding. We determined per-patient sensitivity and specificity for polyps >or=6 mm and >or=10 mm without and with computer-aided detection (CAD). The McNemar test was used for comparison the results without and with CAD. Unblinded colonoscopy detected 50 patients with lesions >or=6 mm and 25 patients with lesions >or=10 mm. Sensitivity of CTC without CAD for these size categories was 80% (40/50, 95% CI: 69-81%) and 64% (16/25, 95% CI: 45-83%), respectively. CTC with CAD detected one additional patient with a lesion >or=6 mm and two with a lesion >or=10 mm, resulting in a sensitivity of 82% (41/50, 95% CI: 71-93%) (p = 0.50) and 72% (18/25, 95% CI: 54-90%) (p = 1.0), respectively. Specificity without CAD for polyps >or=6 mm and >or=10 mm was 84% (101/120, 95% CI: 78-91%) and 94% (136/145, 95% CI: 90-98%), respectively. With CAD, the specificity remained (nearly) unchanged: 83% (99/120, 95% CI: 76-89%) and 94% (136/145, 95% CI: 90-98%), respectively. Thus, although CTC with CAD detected a few more patients than CTC without CAD, it had no statistically significant positive influence on CTC performance.


Assuntos
Colonografia Tomográfica Computadorizada/métodos , Diagnóstico por Computador , Tomografia Computadorizada por Raios X/métodos , Idoso , Algoritmos , Pólipos do Colo/diagnóstico por imagem , Endoscopia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Risco , Sensibilidade e Especificidade
7.
AJR Am J Roentgenol ; 191(5): 1493-502, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18941091

RESUMO

OBJECTIVE: The purpose of this article is to report the effect on lesion conspicuity and the practical efficiency of electronic cleansing for CT colonography (CTC). MATERIALS AND METHODS: Patients were included from the Walter Reed Army Medical Center public database. All patients had undergone extensive bowel preparation with fecal tagging. A primary 3D display method was used. For study I, the data consisted of all patients with polyps > or = 6 mm. Two experienced CTC observers (observer 1 and observer 2) scored the lesion conspicuity considering supine and prone positions separately. For study II, data consisted of 19 randomly chosen patients from the database. The same observers evaluated the data before and after electronic cleansing. Evaluation time, assessment effort, and observer confidence were recorded. RESULTS: In study I, there were 59 lesions partly or completely covered by tagged material (to be uncovered by electronic cleansing) and 70 lesions surrounded by air (no electronic cleansing required). The conspicuity did not differ significantly between lesions that were uncovered by electronic cleansing and lesions surrounded by air (observer 1, p < 0.5; observer 2, p < 0.6). In study II, the median evaluation time per patient after electronic cleansing was significantly shorter than for original data (observer 1, 20 reduced to 12 minutes; observer 2, 17 reduced to 12 minutes). Assessment effort was significantly smaller for both observers (p < 0.0000001), and observer confidence was significantly larger (observer 1, p < 0.007; observer 2, p < 0.0002) after electronic cleansing. CONCLUSION: Lesions uncovered by electronic cleansing have comparable conspicuity with lesions surrounded by air. CTC with electronic cleansing sustains a shorter evaluation time, lower assessment effort, and larger observer confidence than without electronic cleansing.


Assuntos
Algoritmos , Pólipos do Colo/diagnóstico por imagem , Meios de Contraste , Modelos Biológicos , Intensificação de Imagem Radiográfica , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Ar , Colonografia Tomográfica Computadorizada , Simulação por Computador , Humanos , Masculino , Pessoa de Meia-Idade , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
IEEE Trans Image Process ; 16(12): 2891-904, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18092589

RESUMO

A fully automated method is presented to classify 3-D CT data into material fractions. An analytical scale-invariant description relating the data value to derivatives around Gaussian blurred step edges--arch model--is applied to uniquely combine robustness to noise, global signal fluctuations, anisotropic scale, noncubic voxels, and ease of use via a straightforward segmentation of 3-D CT images through material fractions. Projection of noisy data value and derivatives onto the arch yields a robust alternative to the standard computed Gaussian derivatives. This results in a superior precision of the method. The arch-model parameters are derived from a small, but over-determined, set of measurements (data values and derivatives) along a path following the gradient uphill and downhill starting at an edge voxel. The model is first used to identify the expected values of the two pure materials (named L and H) and thereby classify the boundary. Second, the model is used to approximate the underlying noise-free material fractions for each noisy measurement. An iso-surface of constant material fraction accurately delineates the material boundary in the presence of noise and global signal fluctuations. This approach enables straightforward segmentation of 3-D CT images into objects of interest for computer-aided diagnosis and offers an easy tool for the design of otherwise complicated transfer functions in high-quality visualizations. The method is applied to segment a tooth volume for visualization and digital cleansing for virtual colonoscopy.


Assuntos
Algoritmos , Inteligência Artificial , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Rotação , Sensibilidade e Especificidade
9.
IEEE Trans Vis Comput Graph ; 12(5): 885-92, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17080813

RESUMO

Computer-aided diagnosis (CAD) is a helpful addition to laborious visual inspection for preselection of suspected colonic polyps in virtual colonoscopy. Most of the previous work on automatic polyp detection makes use of indicators based on the scalar curvature of the colon wall and can result in many false-positive detections. Our work tries to reduce the number of false-positive detections in the preselection of polyp candidates. Polyp surface shape can be characterized and visualized using lines of curvature. In this paper, we describe techniques for generating and rendering lines of curvature on surfaces and we show that these lines can be used as part of a polyp detection approach. We have adapted existing approaches on explicit triangular surface meshes, and developed a new algorithm on implicit surfaces embedded in 3D volume data. The visualization of shaded colonic surfaces can be enhanced by rendering the derived lines of curvature on these surfaces. Features strongly correlated with true-positive detections were calculated on lines of curvature and used for the polyp candidate selection. We studied the performance of these features on 5 data sets that included 331 pre-detected candidates, of which 50 sites were true polyps. The winding angle had a significant discriminating power for true-positive detections, which was demonstrated by a Wilcoxon rank sum test with p < 0.001. The median winding angle and inter-quartile range (IQR) for true polyps were 7.817 and 6.770 - 9.288 compared to 2.954 and 1.995 - 3.749 for false-positive detections.


Assuntos
Pólipos do Colo/diagnóstico por imagem , Colonografia Tomográfica Computadorizada/métodos , Gráficos por Computador , Reconhecimento Automatizado de Padrão/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Interface Usuário-Computador , Algoritmos , Inteligência Artificial , Análise por Conglomerados , Humanos , Imageamento Tridimensional/métodos , Armazenamento e Recuperação da Informação/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-17354806

RESUMO

Over the past years many computer aided diagnosis (CAD) schemes have been presented for the detection of colonic polyps in CT Colonography. The vast majority of these methods (implicitly) model polyps as approximately spherical protrusions. Polyp shape and size varies greatly, however and is often far from spherical. We propose a shape and size invariant method to detect suspicious regions. The method works by locally deforming the colon surface until the second principal curvature is smaller than or equal to zero. The amount of deformation is a quantitative measure of the 'protrudeness'. The deformation field allows for the computation of various additional features to be used in supervised pattern recognition. It is shown how only a few features are needed to achieve 95% sensitivity at 10 false positives (FP) per dataset for polyps larger than 6 mm.


Assuntos
Algoritmos , Inteligência Artificial , Pólipos do Colo/diagnóstico por imagem , Colonografia Tomográfica Computadorizada/métodos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Humanos , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Acad Radiol ; 12(5): 620-5, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15866136

RESUMO

Capturing clinical observations and findings during the diagnostic imaging process is increasingly becoming a critical step in diagnostic reporting. Standards developers-notably HL7 and DICOM-are making significant progress toward standards that enable exchanging clinical observations and findings among the various information systems of the healthcare enterprise. DICOM-like the HL7 Clinical Document Architecture (CDA) -uses templates and constrained, coded vocabulary (SNOMED, LOINC, etc.). Such a representation facilitates automated software recognition of findings and observations, intrapatient comparison, correlation to norms, and outcomes research. The scope of DICOM Structured Reporting (SR) includes many findings that products routinely create in digital form (measurements, computed estimates, etc.). In the Integrating the Healthcare Enterprise (IHE) framework, two Integration Profiles are defined for clinical data capture and diagnostic reporting: Evidence Document, and Simple Image and Numeric Report. This report describes these two DICOM SR-based integration profiles in the diagnostic reporting process.


Assuntos
Sistemas de Informação em Radiologia/normas , Vocabulário Controlado , Sistemas Computacionais , Documentação , Humanos , Linguagens de Programação , Software
12.
Radiology ; 228(3): 878-85, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12954902

RESUMO

The authors compared a conventional two-directional three-dimensional (3D) display for computed tomography (CT) colonography with an alternative method they developed on the basis of time efficiency and surface visibility. With the conventional technique, 3D ante- and retrograde cine loops were obtained (hereafter, conventional 3D). With the alternative method, six projections were obtained at 90 degrees viewing angles (unfolded cube display). Mean evaluation time per patient with the conventional 3D display was significantly longer than that with the unfolded cube display. With the conventional 3D method, 93.8% of the colon surface came into view; with the unfolded cube method, 99.5% of the colon surface came into view. Sensitivity and specificity were not significantly different between the two methods. Agreements between observers were kappa = 0.605 for conventional 3D display and kappa = 0.692 for unfolded cube display. Consequently, the latter method enhances the 3D endoluminal display with improved time efficiency and higher surface visibility.


Assuntos
Colonografia Tomográfica Computadorizada/métodos , Eficiência , Humanos , Imageamento Tridimensional , Sensibilidade e Especificidade
13.
IEEE Trans Med Imaging ; 22(8): 1005-13, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12906254

RESUMO

In recent years, several methods have been proposed for constructing statistical shape models to aid image analysis tasks by providing a priori knowledge. Examples include principal component analysis of manually or semiautomatically placed corresponding landmarks on the learning shapes [point distribution models (PDMs)], which is time consuming and subjective. However, automatically establishing surface correspondences continues to be a difficult problem. This paper presents a novel method for the automated construction of three-dimensional PDM from segmented images. Corresponding surface landmarks are established by adapting a triangulated learning shape to segmented volumetric images of the remaining shapes. The adaptation is based on a novel deformable model technique. We illustrate our approach using computed tomography data of the vertebra and the femur. We demonstrate that our method accurately represents and predicts shapes.


Assuntos
Algoritmos , Epifise Deslocada/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Imageamento Tridimensional/métodos , Vértebras Lombares/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Humanos , Modelos Biológicos , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...