Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Front Oncol ; 14: 1295251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487718

RESUMO

Introduction: Manual review of organ at risk (OAR) contours is crucial for creating safe radiotherapy plans but can be time-consuming and error prone. Statistical and deep learning models show the potential to automatically detect improper contours by identifying outliers using large sets of acceptable data (knowledge-based outlier detection) and may be able to assist human reviewers during review of OAR contours. Methods: This study developed an automated knowledge-based outlier detection method and assessed its ability to detect erroneous contours for all common head and neck (HN) OAR types used clinically at our institution. We utilized 490 accurate CT-based HN structure sets from unique patients, each with forty-two HN OAR contours when anatomically present. The structure sets were distributed as 80% for training, 10% for validation, and 10% for testing. In addition, 190 and 37 simulated contours containing errors were added to the validation and test sets, respectively. Single-contour features, including location, shape, orientation, volume, and CT number, were used to train three single-contour feature models (z-score, Mahalanobis distance [MD], and autoencoder [AE]). Additionally, a novel contour-to-contour relationship (CCR) model was trained using the minimum distance and volumetric overlap between pairs of OAR contours to quantify overlap and separation. Inferences from single-contour feature models were combined with the CCR model inferences and inferences evaluating the number of disconnected parts in a single contour and then compared. Results: In the test dataset, before combination with the CCR model, the area under the curve values were 0.922/0.939/0.939 for the z-score, MD, and AE models respectively for all contours. After combination with CCR model inferences, the z-score, MD, and AE had sensitivities of 0.838/0.892/0.865, specificities of 0.922/0.907/0.887, and balanced accuracies (BA) of 0.880/0.900/0.876 respectively. In the validation dataset, with similar overall performance and no signs of overfitting, model performance for individual OAR types was assessed. The combined AE model demonstrated minimum, median, and maximum BAs of 0.729, 0.908, and 0.980 across OAR types. Discussion: Our novel knowledge-based method combines models utilizing single-contour and CCR features to effectively detect erroneous OAR contours across a comprehensive set of 42 clinically used OAR types for HN radiotherapy.

2.
Front Oncol ; 13: 1137803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091160

RESUMO

Introduction: Organ-at-risk segmentation for head and neck cancer radiation therapy is a complex and time-consuming process (requiring up to 42 individual structure, and may delay start of treatment or even limit access to function-preserving care. Feasibility of using a deep learning (DL) based autosegmentation model to reduce contouring time without compromising contour accuracy is assessed through a blinded randomized trial of radiation oncologists (ROs) using retrospective, de-identified patient data. Methods: Two head and neck expert ROs used dedicated time to create gold standard (GS) contours on computed tomography (CT) images. 445 CTs were used to train a custom 3D U-Net DL model covering 42 organs-at-risk, with an additional 20 CTs were held out for the randomized trial. For each held-out patient dataset, one of the eight participant ROs was randomly allocated to review and revise the contours produced by the DL model, while another reviewed contours produced by a medical dosimetry assistant (MDA), both blinded to their origin. Time required for MDAs and ROs to contour was recorded, and the unrevised DL contours, as well as the RO-revised contours by the MDAs and DL model were compared to the GS for that patient. Results: Mean time for initial MDA contouring was 2.3 hours (range 1.6-3.8 hours) and RO-revision took 1.1 hours (range, 0.4-4.4 hours), compared to 0.7 hours (range 0.1-2.0 hours) for the RO-revisions to DL contours. Total time reduced by 76% (95%-Confidence Interval: 65%-88%) and RO-revision time reduced by 35% (95%-CI,-39%-91%). All geometric and dosimetric metrics computed, agreement with GS was equivalent or significantly greater (p<0.05) for RO-revised DL contours compared to the RO-revised MDA contours, including volumetric Dice similarity coefficient (VDSC), surface DSC, added path length, and the 95%-Hausdorff distance. 32 OARs (76%) had mean VDSC greater than 0.8 for the RO-revised DL contours, compared to 20 (48%) for RO-revised MDA contours, and 34 (81%) for the unrevised DL OARs. Conclusion: DL autosegmentation demonstrated significant time-savings for organ-at-risk contouring while improving agreement with the institutional GS, indicating comparable accuracy of DL model. Integration into the clinical practice with a prospective evaluation is currently underway.

4.
J Clin Med ; 11(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36294304

RESUMO

PURPOSE: To evaluate the performance of a new, highly flexible radiofrequency (RF) coil system for imaging patients undergoing MR simulation. METHODS: Volumetric phantom and in vivo images were acquired with a commercially available and prototype RF coil set. Phantom evaluation was performed using a silicone-filled humanoid phantom of the head and shoulders. In vivo assessment was performed in five healthy and six patient subjects. Phantom data included T1-weighted volumetric imaging, while in vivo acquisitions included both T1- and T2-weighted volumetric imaging. Signal to noise ratio (SNR) and uniformity metrics were calculated in the phantom data, while SNR values were calculated in vivo. Statistical significance was tested by means of a non-parametric analysis of variance test. RESULTS: At a threshold of p = 0.05, differences in measured SNR distributions within the entire phantom volume were statistically different in two of the three paired coil set comparisons. Differences in per slice average SNR between the two coil sets were all statistically significant, as well as differences in per slice image uniformity. For patients, SNRs within the entire imaging volume were statistically significantly different in four of the nine comparisons and seven of the nine comparisons performed on the per slice average SNR values. For healthy subjects, SNRs within the entire imaging volume were statistically significantly different in seven of the nine comparisons and eight of the nine comparisons when per slice average SNR was tested. CONCLUSIONS: Phantom and in vivo results demonstrate that image quality obtained from the novel flexible RF coil set was similar or improved over the conventional coil system. The results also demonstrate that image quality is impacted by the specific coil configurations used for imaging and should be matched appropriately to the anatomic site imaged to ensure optimal and reproducible image quality.

5.
Radiat Res ; 198(3): 243-254, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35820185

RESUMO

Regenerative medicine holds promise to cure radiation-induced salivary hypofunction, a chronic side effect in patients with head and neck cancers, therefore reliable preclinical models for salivary regenerative outcome will promote progress towards therapies. In this study, our objective was to develop a cone beam computed tomography-guided precision ionizing radiation-induced preclinical model of chronic hyposalivation using immunodeficient NSGSGM3 mice. Using a Schirmer's test based sialagogue-stimulated saliva flow kinetic measurement method, we demonstrated significant differences in hyposalivation specific to age, sex, precision-radiation dose over a chronic (6 months) timeline. NSG-SMG3 mice tolerated doses from 2.5 Gy up to 7.5 Gy. Interestingly, 5-7.5 Gy had similar effects on stimulated-saliva flow (∼50% reduction in young female at 6 months after precision irradiation over sham-treated controls), however, >5 Gy led to chronic alopecia. Different groups demonstrated characteristic saliva fluctuations early on, but after 5 months all groups nearly stabilized stimulated-saliva flow with low-inter-mouse variation within each group. Further characterization revealed precision-radiation-induced glandular shrinkage, hypocellularization, gland-specific loss of functional acinar and glandular cells in all major salivary glands replicating features of human salivary hypofunction. This model will aid investigation of human cell-based salivary regenerative therapies.


Assuntos
Neoplasias de Cabeça e Pescoço , Xerostomia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Camundongos , Camundongos Transgênicos , Saliva , Glândulas Salivares/efeitos da radiação , Xerostomia/etiologia
6.
Int J Radiat Oncol Biol Phys ; 114(4): 725-737, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35671867

RESUMO

PURPOSE: SABR has demonstrated clinical benefit in oligometastatic prostate cancer. However, the risk of developing new distant metastatic lesions remains high, and only a minority of patients experience durable progression-free response. Therefore, there is a critical need to identify which patients will benefit from SABR alone versus combination SABR and systemic agents. Herein we provide, to our knowledge, the first proof-of-concept of circulating prostate cancer-specific extracellular vesicles (PCEVs) as a noninvasive predictor of outcomes in oligometastatic castration-resistant prostate cancer (omCRPC) treated with SABR. METHODS AND MATERIALS: We analyzed the levels and kinetics of PCEVs in the peripheral blood of 79 patients with omCRPC at baseline and days 1, 7, and 14 after SABR using nanoscale flow cytometry and compared with baseline values from cohorts with localized and widely metastatic prostate cancer. The association of omCRPC PCEV levels with oncological outcomes was determined with Cox regression models. RESULTS: Levels of PCEVs were highest in mCRPC followed by omCRPC and were lowest in localized prostate cancer. High PCEV levels at baseline predicted a shorter median time to distant recurrence (3.5 vs 6.6 months; P = .0087). After SABR, PCEV levels peaked on day 7, and median overall survival was significantly longer in patients with elevated PCEV levels (32.7 vs 27.6 months; P = .003). This suggests that pretreatment PCEV levels reflect tumor burden, whereas early changes in PCEV levels after treatment predict response to SABR. In contrast, radiomic features of 11C-choline positron emission tomography and computed tomography before and after SABR were not predictive of clinical outcomes. Interestingly, PCEV levels and peripheral tumor-reactive CD8 T cells (TTR; CD8+ CD11ahigh) were correlated. CONCLUSIONS: This original study demonstrates that circulating PCEVs can serve as prognostic and predictive markers to SABR to identify patients with "true" omCRPC. In addition, it provides novel insights into the global crosstalk, mediated by PCEVs, between tumors and immune cells that leads to systemic suppression of immunity against CRPC. This work lays the foundation for future studies to investigate the underpinnings of metastatic progression and provide new therapeutic targets (eg, PCEVs) to improve SABR efficacy and clinical outcomes in treatment-resistant CRPC.


Assuntos
Vesículas Extracelulares , Neoplasias de Próstata Resistentes à Castração , Radiocirurgia , Colina , Humanos , Masculino , Prognóstico , Radiocirurgia/métodos
7.
Med Phys ; 49(4): e50-e81, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35066871

RESUMO

Dose uncertainty induced by respiratory motion remains a major concern for treating thoracic and abdominal lesions using particle beams. This Task Group report reviews the impact of tumor motion and dosimetric considerations in particle radiotherapy, current motion-management techniques, and limitations for different particle-beam delivery modes (i.e., passive scattering, uniform scanning, and pencil-beam scanning). Furthermore, the report provides guidance and risk analysis for quality assurance of the motion-management procedures to ensure consistency and accuracy, and discusses future development and emerging motion-management strategies. This report supplements previously published AAPM report TG76, and considers aspects of motion management that are crucial to the accurate and safe delivery of particle-beam therapy. To that end, this report produces general recommendations for commissioning and facility-specific dosimetric characterization, motion assessment, treatment planning, active and passive motion-management techniques, image guidance and related decision-making, monitoring throughout therapy, and recommendations for vendors. Key among these recommendations are that: (1) facilities should perform thorough planning studies (using retrospective data) and develop standard operating procedures that address all aspects of therapy for any treatment site involving respiratory motion; (2) a risk-based methodology should be adopted for quality management and ongoing process improvement.


Assuntos
Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador , Movimento (Física) , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos
8.
J Appl Clin Med Phys ; 23(3): e13475, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064749

RESUMO

PURPOSE: The Leksell Gamma Knife Icon unit (IU) was introduced recently as an upgrade to the Perfexion unit (PU) at our Gamma Knife practice. In the current study, we sought mainly to characterize dosimetry and targeting accuracy of the IU treatment deliveries using both invasive frame and frameless treatment workflows. METHODS: Relative output factors were measured by delivering single-shot 4, 8 and 16 mm radiation profiles in the manufacturer's acrylonitrile butadiene styrene spherical phantom in coronal and sagittal planes using EBT3 film. Resultant dosimetry was compared with the manufacturer's dose calculation and derived output factors were compared with the manufacturer's published value. Geometric consistency of stereotactic coordinates based on cone-beam computed tomography (CBCT) versus the traditional conventional CT-based method was characterized using a rigid phantom containing nine fiducial indicators over four separate trials. End-to-end (E2E) testing using EBT3 film was designed to evaluate both dosimetric and geometric accuracy for hypothetical framed and frameless workflows. RESULTS: Relative output factors as measured by the manufacturer were independently confirmed using EBT3 film measurements to within 2%. The mean 3D radial discrepancy in stereotactic space between CBCT and CT-based definition over the sampled locations in our rigid geometry phantom was demonstrated to be between 0.40 mm and 0.56 mm over the set of trials, larger than prior reported values. E2E performed in 2D demonstrates sub-mm (and typically < 0.5 mm) accuracy for framed and frameless workflows; geometric accuracy of framed treatments using CBCT-defined stereotactic coordinates was shown to be slightly improved in comparison with those defined using conventional CT. Furthermore, in phantom, frameless workflows exhibited better accuracy than framed workflows for fractionated treatments, despite large magnitudes of introduced interfraction setup error. Accuracy of dosimetric delivery was confirmed in terms of qualitative comparisons of dose profiles and in terms of 2D gamma pass rates based on 1%/1 mm criteria. CONCLUSION: The IU was commissioned for clinical use of frameless and framed treatment protocols. The present study outlines an extensive E2E methodology for confirmation of dosimetric and geometric treatment accuracy.


Assuntos
Radiocirurgia , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Imageamento Tridimensional , Imagens de Fantasmas , Radiocirurgia/métodos , Fluxo de Trabalho
9.
J Appl Clin Med Phys ; 23(2): e13496, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890094

RESUMO

INTRODUCTION: This study presents a comprehensive collision avoidance framework based on three-dimension (3D) computer-aided design (CAD) modeling, a graphical user interface (GUI) as peripheral to the radiation treatment planning (RTP) environment, and patient-specific plan parameters for intensity-modulated proton therapy (IMPT). METHODS: A stand-alone software application was developed leveraging the Varian scripting application programming interface (API) for RTP database object accessibility. The Collision Avoider software models the Hitachi ProBeat-V half gantry design and the Kuka robotic couch with triangle mesh structures. Patient-specific plan parameters are displayed in the collision avoidance software for potential proximity evaluation. The external surfaces of the patients and the immobilization devices are contoured based on computed tomography (CT) images. A "table junction-to-CT-origin" (JCT) measurement is made for every patient at the time of CT simulation to accurately provide reference location of the patient contours to the treatment couch. Collision evaluations were performed virtually with the program during treatment planning to prevent four major types of collisional events: collisions between the gantry head and the treatment couch, gantry head and the patient's body, gantry head and the robotic arm, and collisions between the gantry head and the immobilization devices. RESULTS: The Collision Avoider software was able to accurately model the proton treatment delivery system and the robotic couch position. Commonly employed clinical beam configuration and JCT values were investigated. Brain and head and neck patients require more complex gantry and patient positioning system configurations. Physical measurements were performed to validate 3D CAD model geometry. Twelve clinical proton treatment plans were used to validate the accuracy of the software. The software can predict all four types of collisional events in our clinic since its full implementation in 2020. CONCLUSION: A highly efficient patient-specific collision prevention program for scanning proton therapy has been successfully implemented. The graphical program has provided accurate collision detection since its inception at our institution.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Simulação por Computador , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Software , Tomografia Computadorizada por Raios X
10.
Front Oncol ; 11: 748331, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737959

RESUMO

Radiation therapy (RT) is an integral component of potentially curative management of esophageal cancer (EC). However, RT can cause significant acute and late morbidity due to excess radiation exposure to nearby critical organs, especially the heart and lungs. Sparing these organs from both low and high radiation dose has been demonstrated to achieve clinically meaningful reductions in toxicity and may improve long-term survival. Accruing dosimetry and clinical evidence support the consideration of proton beam therapy (PBT) for the management of EC. There are critical treatment planning and delivery uncertainties that should be considered when treating EC with PBT, especially as there may be substantial motion-related interplay effects. The Particle Therapy Co-operative Group Thoracic and Gastrointestinal Subcommittees jointly developed guidelines regarding patient selection, treatment planning, clinical trials, and future directions of PBT for EC.

11.
Clin Cancer Res ; 27(23): 6376-6383, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593526

RESUMO

PURPOSE: Outcomes for resistant metastatic castration-resistant prostate cancer (CRPC) are poor. Stereotactic ablative radiotherapy (SABR) induces antitumor immunity in clinical and preclinical studies, but immunologic biomarkers are lacking. PATIENTS AND METHODS: Eighty-nine patients with oligometastatic CRPC were identified by 11C-Choline-PET (Choline-PET) from August 2016 to December 2019 and treated with SABR. Prespecified coprimary endpoints were 2-year overall survival (OS) and PSA progression. Secondary endpoints included 2-year SABR-treated local failure and 6-month adverse events. Correlative studies included peripheral blood T-cell subpopulations before and after SABR. RESULTS: 128 lesions in 89 patients were included in this analysis. Median OS was 29.3 months, and 1- and 2-year OS were 96% and 80%, respectively. PSA PFS was 40% at 1 year and 21% at 2 years. Local PFS was 84.4% and 75.3% at 1 and 2 years, respectively, and no grade ≥3 AEs were observed. Baseline high levels of tumor-reactive T cells (TTR; CD8+CD11ahigh) predicted superior local, PSA, and distant PFS. Baseline high levels of effector memory T cells (TEM; CCR7-CD45RA-) were associated with improved PSA PFS. An increase in TTR at day 14 from baseline was associated with superior OS. CONCLUSIONS: This is the first comprehensive effector T-cell immunophenotype analysis in a phase II trial before and after SABR in CRPC. Results are favorable and support the incorporation of immune-based markers in the design of future randomized trials in patients with oligometastatic CRPC treated with SABR.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Radiocirurgia , Colina , Humanos , Masculino , Orquiectomia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias de Próstata Resistentes à Castração/radioterapia , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos
12.
Int J Radiat Oncol Biol Phys ; 111(5): e54-e62, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400266

RESUMO

Genotoxic damage induced by radiation triggers a highly coordinated DNA damage response, and molecular inhibitors of key nodes within this complex response network can profoundly enhance the antitumor efficacy of radiation. This is especially true for drugs targeting the catalytic subunit of DNA-dependent protein kinase, which is a core component of the nonhomologous end-joining DNA repair pathway, and ataxia telangiectasia mutated, which coordinates cell cycle arrest, apoptosis, and DNA repair functionalities after radiation exposure. Unlike the more modest in vitro radiosensitizing effects seen with classic sensitizing agents such as cisplatin, 5-fluorouracil, or taxanes, DNA-dependent protein kinase or ataxia telangiectasia mutated inhibitors provide much more robust sensitizing effects in vitro, as might be anticipated from targeting these key DNA repair modulators. However, patients with homozygous inactivating mutations of ataxia telangiectasia mutated or mice with homozygous defects in DNA-dependent protein kinase (severe combined immunodeficiency) have profoundly enhanced acute normal tissue radiation reactions. Therefore, there is significant potential that the combination of small molecule inhibitors of these kinases with radiation could cause similar dose-limiting acute normal tissue toxicities. Similarly, although less understood, inhibition of these DNA repair response pathways could markedly increase the risk of late radiation toxicities. Because these potent radiosensitizers could be highly useful to improve local control of otherwise radiation-resistant tumors, understanding the potential for elevated risks of radiation injury is essential for optimizing therapeutic ratio and developing safe and informative clinical trials. In this review, we will discuss 2 straightforward models to assess the potential for enhanced mucosal toxicity in the oral cavity and small intestine established in our laboratories. We also will discuss similar strategies for evaluating potential drug-radiation interactions with regard to increased risks of debilitating late effects.


Assuntos
Radiossensibilizantes/uso terapêutico , Animais , Ataxia Telangiectasia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Camundongos
13.
J Thorac Dis ; 12(11): 7002-7010, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33282405

RESUMO

The majority of esophageal cancer patients are diagnosed with locoregionally confined disease, which is often amenable to curative intent therapy. Chemoradiotherapy (CRT) improves overall survival (OS) in stage II and III esophagus cancer in the neoadjuvant and definitive settings. Due to the close proximity of organs at risk (OARs), including lungs, heart, stomach, bowel, kidneys, and spinal cord, esophageal CRT can result in profound acute and late toxicities. Acute toxicities can include esophagitis, nausea, vomiting, fatigue, and cytopenias. Late complications may also occur months or years after completion of thoracic radiotherapy, including significant cardiac, pulmonary, liver, kidney, or bowel toxicities, which can be life-threatening or fatal. Photon-based radiotherapy exposes OARs to significant doses of radiation, whereas proton beam therapy (PBT) has unique physical properties, as it lacks an exit dose. This allows PBT to deliver, a more conformal dose to the target and minimize the volume of OARs exposed to radiation. This dosimetric advantage may portend an increased therapeutic ratio of CRT for esophagus cancer. The objective of this review is to discuss the evolution of photon and proton-based radiotherapy techniques, rationale, dosimetric and clinical studies comparing outcomes of photon- and proton-based techniques, ongoing prospective trials, and future directions of PBT as a means of reducing toxicity and improving oncologic outcomes for patients with esophagus cancer.

14.
Technol Cancer Res Treat ; 19: 1533033820920650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32329413

RESUMO

BACKGROUND: Lower-dose cone-beam computed tomography protocols for image-guided radiotherapy may permit target localization while minimizing radiation exposure. We prospectively evaluated a lower-dose cone-beam protocol for central nervous system image-guided radiotherapy across a multinational pediatrics consortium. METHODS: Seven institutions prospectively employed a lower-dose cone-beam computed tomography central nervous system protocol (weighted average dose 0.7 mGy) for patients ≤21 years. Treatment table shifts between setup with surface lasers versus cone-beam computed tomography were used to approximate setup accuracy, and vector magnitudes for these shifts were calculated. Setup group mean, interpatient, interinstitution, and random error were estimated, and clinical factors were compared by mixed linear modeling. RESULTS: Among 96 patients, with 2179 pretreatment cone-beam computed tomography acquisitions, median age was 9 years (1-20). Setup parameters were 3.13, 3.02, 1.64, and 1.48 mm for vector magnitude group mean, interpatient, interinstitution, and random error, respectively. On multivariable analysis, there were no significant differences in mean vector magnitude by age, gender, performance status, target location, extent of resection, chemotherapy, or steroid or anesthesia use. Providers rated >99% of images as adequate or better for target localization. CONCLUSIONS: A lower-dose cone-beam computed tomography protocol demonstrated table shift vector magnitude that approximate clinical target volume/planning target volume expansions used in central nervous system radiotherapy. There were no significant clinical predictors of setup accuracy identified, supporting use of this lower-dose cone-beam computed tomography protocol across a diverse pediatric population with brain tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Adolescente , Adulto , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Tomografia Computadorizada de Feixe Cônico/métodos , Feminino , Humanos , Lactente , Cooperação Internacional , Masculino , Pediatria/métodos , Estudos Prospectivos , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/métodos , Adulto Jovem
15.
J Gastrointest Oncol ; 11(1): 144-156, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32175118

RESUMO

Chemoradiotherapy (CRT) plays an essential role in the treatment of esophageal cancer as either curative or neoadjuvant therapy. When delivered with conventional photon-based techniques, multiple adjacent organs at risk including the heart, lungs, kidneys, liver, stomach, and bowel, receive considerable radiation dose which may contribute to acute and late adverse events (AEs). Proton beam therapy (PBT) offers a reduction in radiation exposure to these organs and potentially an improvement in the therapeutic ratio. Herein we discuss the emerging role of PBT for esophageal cancer, including rationale, treatment planning, early dosimetric and clinical comparisons of PBT with photon-based techniques, ongoing prospective trials, and potential areas of opportunity for the incorporation of PBT with the goal of improving outcomes for patients with esophageal cancer.

16.
J Gastrointest Oncol ; 11(1): 212-224, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32175124

RESUMO

In recent years, there has been rapid adaption of proton beam radiotherapy (RT) for treatment of various malignancies in the gastrointestinal (GI) tract, with increasing number of institutions implementing intensity modulated proton therapy (IMPT). We review the progress and existing literature regarding the technical aspects of RT planning for IMPT, and the existing tools that can help with the management of uncertainties which may impact the daily delivery of proton therapy. We provide an in-depth discussion regarding range uncertainties, dose calculations, image guidance requirements, organ and body cavity filling consideration, implanted devices and hardware, use of fiducials, breathing motion evaluations and both active and passive motion management methods, interplay effect, general IMPT treatment planning considerations including robustness plan evaluation and optimization, and finally plan monitoring and adaptation. These advances have improved confidence in delivery of IMPT for patients with GI malignancies under various scenarios.

17.
Radiat Res ; 193(2): 161-170, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31877254

RESUMO

Modern small animal irradiation platforms provide for accurate delivery of radiation under 3D image guidance. However, leveraging these improvements currently comes at the cost of lower-throughput experimentation. Herein, we characterized setup accuracy and dosimetric robustness for mock/sham irradiation of a murine xenograft flank tumor model using the X-RAD SmART+ with the vendor-supplied Monte Carlo (MC) treatment planning system (SmART ATP). The chosen beam arrangement was parallel-opposing using a 20 mm square collimator, aligned off-axis for ipsilateral lung sparing. Using a cohort of five mice imaged with cone beam computed tomography (CBCT) over five consecutive mock-irradiation fractions, we compared inter-fraction setup variability resulting from a vendor-supplied multi-purpose bed with anesthesia nose cone with a more complicated immobilization solution with an integrated bite block with nose cone and Styrofoam platform. A hypothetical "high-throughput" image-guidance scenario was investigated, wherein the day 1 stage coordinates (resulting from CBCT guidance) were applied on days 2-5. Daily inter-fraction setup errors were evaluated per specimen (days 2-5) using CBCT-derived offsets from day 1 stage coordinates. Using the CBCT images and Monte Carlo dose calculation, 3D dosimetric plan robustness was evaluated for the vendor-supplied immobilization solution, for both the high-throughput guidance scenario as well as for use of daily CBCT-based alignment. Inter-fraction setup offset magnitude was 3.6 (±1.5) mm for the vendor-supplied immobilization compared to 3.3 (±1.8) mm for the more complicated solution. For the vendor-supplied immobilization, we found that daily CBCT was needed to adequately cover the flank tumors dosimetrically, given our chosen treatment approach.


Assuntos
Transformação Celular Neoplásica , Tomografia Computadorizada de Feixe Cônico , Fracionamento da Dose de Radiação , Erros de Configuração em Radioterapia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos , Método de Monte Carlo , Radioterapia Guiada por Imagem
18.
Pract Radiat Oncol ; 9(6): 410-417, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31310815

RESUMO

PURPOSE: The purpose of this study was to compare Functional Assessment of Cancer Therapy-Esophagus (FACT-E) questionnaire changes during proton (PRT) or photon (XRT) chemoradiation therapy (CRT) for esophageal cancer (EC). METHODS AND MATERIALS: We reviewed patients enrolled in a prospective registry who received preoperative or definitive CRT for EC. Patients completed the FACT-E before CRT and during the last week of CRT. Analysis of variance testing was used to assess associations between patient and treatment characteristics and FACT-E score changes. RESULTS: One hundred twenty-five patients completed a baseline and posttreatment FACT-E; 63 received XRT and 62 received PRT. The mean age was 65 years; the PRT group was older (68 vs 64 years, P = .0063). The following characteristics were similar between cohorts: 83% male, 78% adenocarcinoma, and 89% stage II-III. The radiation therapy prescription dose was higher in the PRT group (≥50 Gy in 94% vs 67%, P < .0001), whereas the median clinical target volume was smaller in the PRT group (553 vs 668 cm3, P = .013). Most (96%) received concurrent weekly carboplatin-paclitaxel. The mean FACT-E score was 136.3 (standard deviation [SD] 21.0) at baseline and 119.6 (SD 24.8) post-CRT, with mean change of -16.7 (SD 19.8). Baseline scores were comparable between XRT and PRT groups (135.9 vs 136.7, P = .82). On univariate and multivariate analyses, less mean decline in FACT-E score was observed for PRT versus XRT (-12.7 vs -20.6, P = .026) and for trimodality versus definitive therapy (-13.0 vs -22.5, P = .008). CONCLUSIONS: For patients receiving CRT for EC, PRT was associated with less decline in FACT-E scores compared with XRT.


Assuntos
Quimiorradioterapia/métodos , Medidas de Resultados Relatados pelo Paciente , Fótons/uso terapêutico , Qualidade de Vida/psicologia , Idoso , Feminino , Humanos , Masculino , Estudos Prospectivos , Prótons
19.
Radiat Oncol ; 14(1): 108, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208439

RESUMO

PURPOSE: The purpose of this study is to evaluate the impact of two methods of reporting planned dose distributions on the Gamma analysis pass rates for comparison with measured 2D film dose and simulated delivered 3D dose for proton pencil beam scanning treatment of the Imaging and Radiation Oncology Core (IROC) proton lung and liver mobile phantoms. METHODS AND MATERIALS: Four-dimensional (4D) computed-tomography (CT) image sets were acquired for IROC proton lung and liver mobile phantoms, which include dosimetry inserts that contains targets, thermoluminescent dosimeters and EBT2 films for plan dose verification. 4DCT measured fixed motion magnitudes were 1.3 and 1.0 cm for the lung and liver phantoms, respectively. To study the effects of motion magnitude on the Gamma analysis pass rate, three motion magnitudes for each phantom were simulated by creating virtual 4DCT image sets with motion magnitudes scaled from the scanned phantom motion by 50, 100, and 200%. The internal target volumes were contoured on the maximum intensity projection CTs of the 4DCTs for the lung phantom and on the minimum intensity projection CTs of the 4DCTs for the liver phantom. Treatment plans were optimized on the average intensity projection (AVE) CTs of the 4DCTs using the RayStation treatment planning system. Plan doses were calculated on the AVE CTs, which was defined as the planned AVE dose (method one). Plan doses were also calculated on all 10 phase CTs of the 4DCTs and were registered using target alignment to and equal-weight-summed on the 50% phase (T50) CT, which was defined as the planned 4D dose (method two). The planned AVE doses and 4D doses for phantom treatment were reported to IROC, and the 2D-2D Gamma analysis pass rates for measured film dose relative to the planned AVE and 4D doses were compared. To evaluate motion interplay effects, simulated delivered doses were calculated for each plan by sorting spots into corresponding respiratory phases using spot delivery time recorded in the log files by the beam delivery system to calculate each phase dose and accumulate dose to the T50 CTs. Ten random beam starting phases were used for each beam to obtain the range of the simulated delivered dose distributions. 3D-3D Gamma analyses were performed to compare the planned 4D/AVE doses with simulated delivered doses. RESULTS: The planned 4D dose matched better with the measured 2D film dose and simulated delivered 3D dose than the planned AVE dose. Using planned 4D dose as institution reported planned dose to IROC improved IROC film dose 2D-2D Gamma analysis pass rate from 92 to 96% on average for three films for the lung phantom (7% 5 mm), and from 92 to 94% in the sagittal plane for the liver phantom (7% 4 mm), respectively, compared with using the planned AVE dose. The 3D-3D Gamma analysis (3% 3 mm) pass rate showed that the simulated delivered doses for lung and liver phantoms using 10 random beam starting phases for each delivered beam matched the planned 4D dose significantly better than the planned AVE dose for phantom motions larger than 1 cm (p ≤ 0.04). CONCLUSIONS: It is recommended to use the planned 4D dose as the institution reported planned dose to IROC to compare with the measured film dose for proton mobile phantoms to improve film Gamma analysis pass rate in the IROC credentialing process.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Fígado/efeitos da radiação , Pulmão/efeitos da radiação , Movimento , Imagens de Fantasmas , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Respiração
20.
J Appl Clin Med Phys ; 20(5): 99-108, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30972922

RESUMO

PURPOSE: The aim of this work is to describe the clinical implementation of respiratory-gated spot-scanning proton therapy (SSPT) for the treatment of thoracic and abdominal moving targets. The experience of our institution is summarized, from initial acceptance and commissioning tests to the development of standard clinical operating procedures for simulation, motion assessment, motion mitigation, treatment planning, and gated SSPT treatment delivery. MATERIALS AND METHODS: A custom respiratory gating interface incorporating the Real-Time Position Management System (RPM, Varian Medical Systems, Inc., Palo Alto, CA, USA) was developed in-house for our synchrotron-based delivery system. To assess gating performance, a motion phantom and radiochromic films were used to compare gated vs nongated delivery. Site-specific treatment planning protocols and conservative motion cutoffs were developed, allowing for free-breathing (FB), breath-holding (BH), or phase-gating (Ph-G). Room usage efficiency of BH and Ph-G treatments was retrospectively evaluated using beam delivery data retrieved from our record and verify system and DICOM files from patient-specific quality assurance (QA) procedures. RESULTS: More than 70 patients were treated using active motion management between the launch of our motion mitigation program in October 2015 and the end date of data collection of this study in January 2018. During acceptance procedures, we found that overall system latency is clinically-suitable for Ph-G. Regarding room usage efficiency, the average number of energy layers delivered per minute was <10 for Ph-G, 10-15 for BH and ≥15 for FB, making Ph-G the slowest treatment modality. When comparing to continuous delivery measured during pretreatment QA procedures, the median values of BH treatment time were extended from 6.6 to 9.3 min (+48%). Ph-G treatments were extended from 7.3 to 13.0 min (+82%). CONCLUSIONS: Active motion management has been crucial to the overall success of our SSPT program. Nevertheless, our conservative approach has come with an efficiency cost that is more noticeable in Ph-G treatments and should be considered in decision-making.


Assuntos
Neoplasias Abdominais/radioterapia , Movimento , Imagens de Fantasmas , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Neoplasias Torácicas/radioterapia , Suspensão da Respiração , Humanos , Prognóstico , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Síncrotrons/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...