Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835015

RESUMO

Chemical composition and physical parameters of the implant surface, such as roughness, regulate the cellular response leading to implant bone osseointegration. Possible implant surface modifications include anodization or the plasma electrolytic oxidation (PEO) treatment process that produces a thick and dense oxide coating superior to normal anodic oxidation. Experimental modifications with Plasma Electrolytic Oxidation (PEO) titanium and titanium alloy Ti6Al4V plates and PEO additionally treated with low-pressure oxygen plasma (PEO-S) were used in this study to evaluate their physical and chemical properties. Cytotoxicity of experimental titanium samples as well as cell adhesion to their surface were assessed using normal human dermal fibroblasts (NHDF) or L929 cell line. Moreover, the surface roughness, fractal dimension analysis, and texture analysis were calculated. Samples after surface treatment have substantially improved properties compared to the reference SLA (sandblasted and acid-etched) surface. The surface roughness (Sa) was 0.59-2.38 µm, and none of the tested surfaces had cytotoxic effect on NHDF and L929 cell lines. A greater cell growth of NHDF was observed on the tested PEO and PEO-S samples compared to reference SLA sample titanium.


Assuntos
Implantes Dentários , Humanos , Propriedades de Superfície , Titânio/química , Teste de Materiais , Osseointegração/fisiologia
2.
Materials (Basel) ; 15(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35454406

RESUMO

Laser-induced periodic surface structures (LIPSS) are the sub-wavelength periodic nanostructures generated by the femtosecond laser. Implant topography and its nanostructural changes can be important for biomedical applications. In order to compare the surface topography of different implants, appropriate mathematical and physical descriptive methods should be provided. The aim of the study was to evaluate the experimental LIPSS-based-Low Spatial Frequency LIPSS (LSFL) dental implant surfaces. Novel methods of surface analysis, such as Fractal Dimension Analysis and Texture Analysis, were compared to the standard surface roughness evaluation. Secondary, cell viability, and attachment tests were applied in order to evaluate the biological properties of the new titanium surface and to compare their correlation with the physical properties of the new surfaces. A Normal Human Dermal Fibroblast (NHDF) cytotoxicity test did not show an impact on the vitality of the cells. Our study has shown that the laser LIPSS implant surface modifications significantly improved the cell adhesion to the tested surfaces. We observed a strong correlation of adhesion and the growth of cells on the tested surface, with an increase in implant surface roughness with the best results for the moderately rough (2 µm) surfaces. Texture and fractal dimension analyses are promising methods to evaluate dental implants with complex geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...