Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 167: 137-141, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28027886

RESUMO

To overcome the limitations of currently used window entry/exit traps, we developed an efficient new glue net entry/exit trap (GNT) that is economical, easily transported and assembled, and can be utilized for a variety of studies which aim to investigate the dynamics of mosquito movements between indoor and outdoor habitats. Cage experiments were conducted to determine what percentage of mosquitoes trying to pass through the netting are actually being caught. The GNT caught 97% of female and 98% of male Anopheles gambiae s.s., as well as 97.5% of female and 98% of male Culex pipiens attempting to cross into a bait chamber adjoining the release cage. During a six day field study, the bedroom windows of 12 homes in Mali were fitted with entry/exit GNTs. Traps without glue were fitted over the inside and outside bedroom windows of an additional 12 homes as a control. A total of 446 An. gambiae s.l. were caught attempting to exit dwellings while 773 An. gambiae s.l. were caught attempting to enter. The number of males and females attempting to exit dwellings were roughly similar (215 and 231 respectively) while there was a slight difference in the number of males and females trying to enter (382 and 430 respectively). Pyrethrum spray catches (PSC's) conducted inside the dwellings on the last day of the experiment yielded only six females and a single male.


Assuntos
Anopheles , Comportamento Animal , Culex , Entomologia/instrumentação , Animais , Feminino , Masculino , Mali
2.
Acta Trop ; 162: 245-247, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27450393

RESUMO

The distribution of Aedes albopictus in Africa has thus far been known to be restricted to coastal Sub-Saharan countries. This report describes the first record of the tiger mosquito in habitats located in Mali, at a significant distance from the coastal areas of the continent. Aedes albopictus was observed over several years in increasing frequency in Mopti in Central Mali and later in the capital city Bamako, both adjacent to the Niger River. These findings suggest further dissemination of Ae. albopictus could be facilitated by river transport of goods and commodities which harbor larvae and eggs of this species. If correct, the distribution of Ae. albopictus is expected to extend to areas located upstream of the Niger River and its tributaries.


Assuntos
Aedes , Ecossistema , Rios , Animais , Larva , Mali/epidemiologia
3.
Acta Trop ; 150: 29-34, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26119042

RESUMO

Attractive toxic sugar bait (ATSB) is a highly effective method which targets mosquitoes based on their sugar foraging behavior, by presenting baits of attractive compounds in combination with sugar and oral toxin to local mosquito populations. Environmental concerns and insecticide selection-pressure have prompted investigations of novel, ecologically-harmless substances which can be used as insecticides. This study examined the efficacy of microencapsulated garlic-oil as the oral toxin component of ATSB for controlling Anopheles sergentii populations inhabiting desert-surrounded wetlands in Israel. ATSB solution containing 0.4% encapsulated garlic oil was applied to local vegetation around a streamlet located in the lower Jordan Valley. To determine the propensity of bait ingestion, and assess the potential ecological impact of the method, mosquito and non-target specimens were collected and tested for the presence of natural plant- or attractive sugar bait (ASB)-derived sugars. Over the experimental period, biting-pressure values in the ATSB treatment site decreased by 97.5%, while at the control site, treated with non-toxic ASB, no significant changes were observed. Approximately 70% of the mosquitoes collected before both treatments, as well as those captured following the application of ASB at the control site, were found to have ingested sugar prior to capture. Non-target insects were minimally affected by the treatment when ATSB was applied to foliage of non-flowering plants. Of the non-Diptera species, only 0.7% of the sampled non-target insects were found to have ingested ASB-solution which was applied to green vegetation, compared with 8.5% which have foraged on ASB-derived sugars applied to flowering plants. Conversely, a high proportion of the non-target species belonging to the order Diptera, especially non-biting midges, were found to have ingested foliage-applied ASB, with more than 36% of the specimens collected determined to have foraged on bait-derived sugars. These results prove that food-grade, EPA-exempt microencapsulated garlic oil is a highly effective insecticide which can be utilized for mosquito population control. The relatively short half-life of this active ingredient makes it a suitable for use in areas where repeated application is possible, limiting the accumulation of deleterious compounds and ensuring minimal environmental impact when applied in accordance with label recommendations.


Assuntos
Compostos Alílicos/administração & dosagem , Anopheles , Carboidratos/administração & dosagem , Inseticidas/administração & dosagem , Controle de Mosquitos/métodos , Sulfetos/administração & dosagem , Animais , Química Farmacêutica , Estados Unidos , United States Environmental Protection Agency
4.
Plant J ; 81(6): 884-94, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25619921

RESUMO

Over-reduction of the photosynthetic electron transport chain may severely damage the photosynthetic apparatus as well as other constituents of the chloroplast and the cell. Here, we exposed Arabidopsis leaves to saturating light either under normal atmospheric conditions or under CO2--and O2 -limiting conditions, which greatly increase excitation and electron pressures by draining terminal electron acceptors. The two treatments were found to have very different, often opposing, effects on the structure of the thylakoid membranes, including the width of the granal lumenal compartment. Modulation of the latter is proposed to be related to movements of ions across the thylakoid membrane, which alter the relative osmolarity of the lumen and stroma and affect the partitioning of the proton motive force into its electrical and osmotic components. The resulting changes in thylakoid organization and lumenal width should facilitate the repair of photodamaged photosystem II complexes in response to light stress under ambient conditions, but are expected to inhibit the repair cycle when the light stress occurs concurrently with CO2 and O2 depletion. Under the latter conditions, the changes in thylakoid structure are predicted to complement other processes that restrict the flow of electrons into the high-potential chain, thus moderating the production of deleterious reactive oxygen species at photosystem I.


Assuntos
Arabidopsis/fisiologia , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Tilacoides/fisiologia , Arabidopsis/efeitos da radiação , Arabidopsis/ultraestrutura , Transporte de Elétrons , Luz , Estresse Oxidativo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Tilacoides/efeitos da radiação , Tilacoides/ultraestrutura
5.
Proc Natl Acad Sci U S A ; 111(44): 15839-44, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25331882

RESUMO

A crucial component of protein homeostasis in cells is the repair of damaged proteins. The repair of oxygen-evolving photosystem II (PS II) supercomplexes in plant chloroplasts is a prime example of a very efficient repair process that evolved in response to the high vulnerability of PS II to photooxidative damage, exacerbated by high-light (HL) stress. Significant progress in recent years has unraveled individual components and steps that constitute the PS II repair machinery, which is embedded in the thylakoid membrane system inside chloroplasts. However, an open question is how a certain order of these repair steps is established and how unwanted back-reactions that jeopardize the repair efficiency are avoided. Here, we report that spatial separation of key enzymes involved in PS II repair is realized by subcompartmentalization of the thylakoid membrane, accomplished by the formation of stacked grana membranes. The spatial segregation of kinases, phosphatases, proteases, and ribosomes ensures a certain order of events with minimal mutual interference. The margins of the grana turn out to be the site of protein degradation, well separated from active PS II in grana core and de novo protein synthesis in unstacked stroma lamellae. Furthermore, HL induces a partial conversion of stacked grana core to grana margin, which leads to a controlled access of proteases to PS II. Our study suggests that the origin of grana in evolution ensures high repair efficiency, which is essential for PS II homeostasis.


Assuntos
Arabidopsis/metabolismo , Evolução Molecular , Complexo de Proteína do Fotossistema II/metabolismo , Proteólise , Tilacoides/metabolismo , Arabidopsis/genética , Complexo de Proteína do Fotossistema II/genética , Tilacoides/genética
6.
Plant J ; 70(1): 157-76, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22449050

RESUMO

The process of oxygenic photosynthesis enabled and still sustains aerobic life on Earth. The most elaborate form of the apparatus that carries out the primary steps of this vital process is the one present in higher plants. Here, we review the overall composition and supramolecular organization of this apparatus, as well as the complex architecture of the lamellar system within which it is harbored. Along the way, we refer to the genetic, biochemical, spectroscopic and, in particular, microscopic studies that have been employed to elucidate the structure and working of this remarkable molecular energy conversion device. As an example of the highly dynamic nature of the apparatus, we discuss the molecular and structural events that enable it to maintain high photosynthetic yields under fluctuating light conditions. We conclude the review with a summary of the hypotheses made over the years about the driving forces that underlie the partition of the lamellar system of higher plants and certain green algae into appressed and non-appressed membrane domains and the segregation of the photosynthetic protein complexes within these domains.


Assuntos
Embriófitas/fisiologia , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Tilacoides/fisiologia , Luz , Fosforilação
7.
Proc Natl Acad Sci U S A ; 108(50): 20248-53, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22128333

RESUMO

The machinery that conducts the light-driven reactions of oxygenic photosynthesis is hosted within specialized paired membranes called thylakoids. In higher plants, the thylakoids are segregated into two morphological and functional domains called grana and stroma lamellae. A large fraction of the luminal volume of the granal thylakoids is occupied by the oxygen-evolving complex of photosystem II. Electron microscopy data we obtained on dark- and light-adapted Arabidopsis thylakoids indicate that the granal thylakoid lumen significantly expands in the light. Models generated for the organization of the oxygen-evolving complex within the granal lumen predict that the light-induced expansion greatly alleviates restrictions imposed on protein diffusion in this compartment in the dark. Experiments monitoring the redox kinetics of the luminal electron carrier plastocyanin support this prediction. The impact of the increase in protein mobility within the granal luminal compartment in the light on photosynthetic electron transport rates and processes associated with the repair of photodamaged photosystem II complexes is discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Tilacoides/metabolismo , Arabidopsis/ultraestrutura , Citocromos f/metabolismo , Escuridão , Difusão , Cinética , Modelos Biológicos , Oxirredução , Tilacoides/ultraestrutura
8.
Plant Mol Biol ; 76(3-5): 221-34, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20859754

RESUMO

Aerobic life on Earth depends on oxygenic photosynthesis. This fundamentally important process is carried out within an elaborate membranous system, called the thylakoid network. In angiosperms, thylakoid networks are constructed almost from scratch by an intricate, light-dependent process in which lipids, proteins, and small organic molecules are assembled into morphologically and functionally differentiated, three-dimensional lamellar structures. In this review, we summarize the major events that occur during this complex, largely elusive process, concentrating on those that are directly involved in network formation and potentiation and highlighting gaps in our knowledge, which, as hinted by the title, are substantial.


Assuntos
Magnoliopsida/metabolismo , Tilacoides/metabolismo
9.
Nucleus ; 1(6): 475-80, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21327089

RESUMO

The extensive and multifaceted traffic between nucleus and cytoplasm is handled by a single type of macromolecular assembly called the nuclear pore complex (NPC). While being readily accessible to ions and metabolites, the NPC imposes stringent selectivity on the passage of proteins and RNA, tightly regulating their traffic between the two major cellular compartments. Here we discuss how shuttling carriers, which mediate the transport of macromolecules through NPCs, cross its permeability barrier. We also discuss the co-existence of receptor-mediated macromolecular transport with the passive diffusion of small molecules in the context of the various models suggested for the permeability barrier of the NPC. Finally, we speculate on how nuclear transport receptors negotiate the dependence of their NPC-permeating abilities on hydrophobic interactions with the necessity of avoiding these promiscuous interactions in the cytoplasm and nucleus.


Assuntos
Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Modelos Biológicos , Poro Nuclear/química , Poro Nuclear/fisiologia , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...