Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Planta ; 256(5): 98, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36222916

RESUMO

MAIN CONCLUSION: A G to T nucleotide substitution of OsTSG2 led to more tillers and smaller grains in rice by participating in phytohormone signal transduction and starch and sucrose metabolism. Rice is one of the most important food crops worldwide. Grain size and tiller number are the most important factors determining rice yield. The more-tiller and small-grain 2 (tsg2) mutant in rice, developed by ethyl methanesulfonate (EMS) mutagenesis, has smaller grains, more tillers, and a higher yield per plant relative to the wild-type (WT). Based on the genetic analysis, the tsg2 traits were conferred by a single recessive nuclear gene located on the long arm of chromosome 2. After fine-mapping the OsTSG2 locus, a G to T nucleotide substitution was identified, which resulted in an A to S mutation in a highly conserved domain of the growth-regulation factor protein. The single-strand conformation polymorphism (SSCP) marker was developed based on the SNP associated with the phenotypic segregation of traits. The functional complementation of OsTSG2 from the tsg2 mutant to the WT led to an increase in grain size and weight. The differentially expressed genes (DEGs) identified by RNA sequencing were involved in phytohormone signal transduction and starch and sucrose metabolism. Enzyme-linked immunosorbent assay (ELISA) analysis detected variation in the indole acetic acid (IAA) and jasmonic acid (JA) content in the tsg2 inflorescence, while the cellular organization, degree of chalkiness, gel consistency, amylose content, and alkaline spreading value were affected in the tsg2 grains. The findings elucidated the regulatory mechanisms of the tsg2 traits. This mutant could be used in marker-assisted breeding for high-yield and good-quality rice.


Assuntos
Oryza , Amilose/metabolismo , Clonagem Molecular , Grão Comestível/genética , Grão Comestível/metabolismo , Metanossulfonato de Etila/metabolismo , Perfilação da Expressão Gênica , Nucleotídeos/metabolismo , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Amido/metabolismo , Sacarose/metabolismo
2.
Plants (Basel) ; 9(11)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153036

RESUMO

The anthocyanin biosynthesis attracts strong interest due to the potential antioxidant value and as an important morphological marker. However, the underlying mechanism of anthocyanin accumulation in plant tissues is not clearly understood. Here, a rice mutant with a purple color in the leaf blade, named pl6, was developed from wild type (WT), Zhenong 41, with gamma ray treatment. By map-based cloning, the OsPL6 gene was located on the short arm of chromosome 6. The multiple mutations, such as single nucleotide polymorphism (SNP) at -702, -598, -450, an insertion at -119 in the promoter, three SNPs and one 6-bp deletion in the 5'-UTR region, were identified, which could upregulate the expression of OsPL6 to accumulate anthocyanin. Subsequently, the transcript level of structural genes in the anthocyanin biosynthesis pathway, including OsCHS, OsPAL, OsF3H and OsF3'H, was elevated significantly. Histological analysis revealed that the light attenuation feature of anthocyanin has degraded the grana and stroma thylakoids, which resulted in poor photosynthetic efficiency of purple leaves. Despite this, the photoabatement and antioxidative activity of anthocyanin have better equipped the pl6 mutant to minimize the oxidative damage. Moreover, the contents of abscisic acid (ABA) and cytokanin (CK) were elevated along with anthocyanin accumulation in the pl6 mutant. In conclusion, our results demonstrate that activation of OsPL6 could be responsible for the purple coloration in leaves by accumulating excessive anthocyanin and further reveal that anthocyanin acts as a strong antioxidant to scavenge reactive oxygen species (ROS) and thus play an important role in tissue maintenance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...