Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microscopy (Oxf) ; 71(1): 34-40, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-34302725

RESUMO

Phase diagram of Au-Si binary alloy system shows a large drop in melting temperature of about 1000K compared with that of Si at a composition of Au:Si = 81:19, where the melting temperature is about 636K. Mixing of Au and Si below the melting temperature was observed by transmission electron microscopy experiment, and it was found that the mixed region shows a diffraction pattern of a diffuse ring intensity indicating an amorphous structure of the mixed area. Si L-emission spectra, which reflect the energy state of bonding electrons of Si atom, of molten Au81Si19 alloy were measured for the first time to investigate the energy state of valence electrons of Si. The Si L-emission spectrum showed a characteristic loss of L1 peak, which is related to sp3 directional bonding in crystalline Si. The intensity profile is also different from that of molten Si reported. This suggests a characteristic atomic arrangement that exists in the molten state. The intensity profile also indicated a small density of state in the molten state at Fermi energy. The obtained spectrum was compared with the calculated density of state of possible crystal structures reported. The comparison suggested that Si atoms are surrounded by eight Au atoms in the molten state of Au81Si19 alloy. The formation of this local atomic arrangement can be an origin of a large drop of melting temperature at about Au:Si = 81:19.

2.
Materials (Basel) ; 14(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34576461

RESUMO

Icosahedral Al-Cu-Fe quasicrystal (QC) shows moderate electrical conductivity and low thermal conductivity, and both p- and n-type conduction can be controlled by tuning the sample composition, making it potentially suited for thermoelectric materials. In this work, we investigated the effect of introducing chemical disorder through heavy element substitution on the thermal conductivity of Al-Cu-Fe QC. We substituted Au and Pt elements for Cu up to 3 at% in a composition of Al63Cu25Fe12, i.e., Al63Cu25-x(Au,Pt)xFe12 (x = 0, 1, 2, 3). The substitutions of Au and Pt for Cu reduced the phonon thermal conductivity at 300 K (κph,300K) by up to 17%. The reduction of κph,300K is attributed to a decrease in the specific heat and phonon relaxation time through heavy element substitution. We found that increasing the Pt content reduced the specific heat at high temperatures, which may be caused by the locked state of phasons. The observed glass-like low values of κph,300K (0.9-1.1 W m-1 K-1 at 300 K) for Al63Cu25-x(Au,Pt)xFe12 are close to the lower limit calculated using the Cahill model.

3.
J Phys Chem A ; 124(38): 7710-7715, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32866394

RESUMO

A series of AuxSi4- cluster anions (x = 1-4) were generated most abundantly by laser ablation of a Au4Si alloy target. Photoelectron spectroscopy and density functional theory (DFT) calculation of AuxSi4- (x = 1-4) revealed that Au3Si4- can be viewed as an electronically closed superatom and is composed of a Si4 unit whose three adjacent edges of a single facet are bridged by three Au atoms. Such phase-segregated structure is facilitated by aurophilic interaction between the three Au atoms and results in a large permanent dipole moment (4.43 D). DFT calculations on an electronically equivalent superatom Au4Si4 predicted a new structure in which the uncoordinated Si atom of Au3Si4- is bonded by Au+. This Au4Si4 is much more stable than a cubic structure previously reported and has a large HOMO-LUMO gap (1.68 eV) and a small permanent dipole moment (0.41 D).

4.
Artigo em Inglês | MEDLINE | ID: mdl-32707571

RESUMO

The magnetic susceptibility of the 1/1 approximants to icosahedral quasicrystals in a series of Cd85-xMgxTb15 (x = 5, 10, 15, 20) alloys was investigated in detail. The occurrence of antiferromagnetic to spin-glass-like transition was noticed by increasing Mg. Transmission electron microscopy analysis evidenced a correlation between the magnetic transition and suppression of the monoclinic superlattice ordering with respect to the orientation of the Cd4 tetrahedron at T > 100 K. The possible origins of this phenomenon were discussed in detail. The occurrence of the antiferromagnetic to spin-glass-like magnetic transition is associated with the combination of chemical disorder due to a randomized substitution of Cd with Mg and the orientational disorder of the Cd4 tetrahedra.

5.
J Phys Condens Matter ; 32(41): 415801, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32408292

RESUMO

A systematic investigation has been performed to elucidate effects of rare earth type and structural complexity on magnetic properties of icosahedral quasicrystal (iQC) and their cubic approximants (APs) in the ternary Cd-Mg-RE (RE = Gd, Tb, Dy, Ho, Er, and Tm) systems. At low temperatures, iQCs and 2/1 APs exhibit spin-glass-like freezing for RE = Gd, Tb, Dy, and Ho, while for Er and Tm they do not show freezing behavior down to the base temperature ∼2 K. The 1/1 APs exhibit either spin-glass-like freezing or antiferromagnetic (AFM) ordering depending on their constituent Mg content. The T f values show increasing trend from iQC to 2/1 and 1/1 APs. In contrast, the absolute values of Weiss temperature for iQCs are larger than those in 2/1 and 1/1 APs, indicating that the total AFM interactions between the neighboring spins are larger in aperiodic, rather than periodic systems. Competing spin interactions originating from the long-range Ruderman-Kittel-Kasuya-Yoshida mechanism along with chemical disorder of Cd/Mg ions presumably account for the observed spin-glass-like behavior in Cd-Mg-RE iQCs and APs.

6.
Sci Technol Adv Mater ; 20(1): 774-785, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447956

RESUMO

Hydrogen storage properties and reactivity for hydrogenation of acetylene in a series of CeNi5-x Ga x (x = 0, 0.5, 0.75, 1, 1.25, 1.5) alloys and Mg2Ni were determined and compared. The structure of CeNi5 (CaCu5 type) was maintained up to CeNi3.5Ga1.5 when Ni was replaced by Ga. The replacement facilitated hydrogenation absorption by creating larger interstitial spaces through expansion of the lattice, allowing CeNi4.25Ga0.75 to absorb the greatest proportion of hydrogen atoms among the alloys under the same conditions. The results showed that the absorbed hydrogen in CeNi3.75Ga1.25 improved reactivity. In contrast, Mg2Ni formed a hydride upon hydrogenation of acetylene and thus possessed much lower activity. The difference of the activity of absorbed hydrogen between CeNi5-x Ga x and Mg2Ni was confirmed from transient response tests under reaction gases alternately containing He and H2.

7.
Inorg Chem ; 58(14): 9181-9186, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247815

RESUMO

We report on the formation of a new icosahedral quasicrystal (iQC) in the Au-Sn-Yb alloy system. This iQC has a primitive icosahedral lattice with a lattice constant aico of 0.5447(7) nm and a composition that was determined to be Au60.0Sn26.7Yb13.3. X-ray absorption spectroscopy measurement of the near Yb L3 edge demonstrates that the Yb valence in the iQC is an intermediate valence between divalent (4f14) and trivalent (4f13) at ambient pressure and was determined to be 2.18+. The results are compared to those for a corresponding 2/1 cubic approximant crystal. The formation of this new iQC is discussed in terms of the atomic size factor (δ) and the valence electron-to-atom ratio (e/a).

8.
Inorg Chem ; 58(9): 6320-6327, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30977363

RESUMO

The Yb-Ga-Au 1/1 quasicrystal approximant (AP) composition ranges from Yb14.0Ga20.6Au65.4 to Yb14.8Ga46.3Au38.9, and single crystals of the 1/1 AP having the composition Yb13.8Ga26.1Au60.1 were obtained by the self-flux technique. X-ray structural analysis demonstrated that the atomic structure [space group Im3; a = 14.6889(9) Å] can be described by the body-centered packing of Tsai-type rhombic triacontahedron (RTH) clusters. The positional disorder in these clusters, interpreted as the average of an orientationally disordered tetrahedron and triangle, results in positional disorder in the outer shells. The elemental distributions and positions of mixtures of Au and Ga atoms in the RTH clusters correspond to those in the isostructural Yb15Al36Au49 1/1 AP.

9.
Sci Rep ; 9(1): 1245, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718572

RESUMO

The phase and local environment, neighbouring atoms and coordination numbers (CN), for an Al-Cu-Fe multilayer were studied during heating (to 800 °C) and cooling (to room temperature) processes using in-situ X-Ray diffraction (XRD) and in-situ X-ray absorption spectroscopy (XAS) techniques to investigate the formation of Al-Cu-Fe quasicrystals (QCs). In-situ XRD clarified the transition of the ω-Al7Cu2Fe phase to a liquid state at the high temperature which transformed into the QC phase during cooling. The in-situ XAS showed a relatively small shift in distance between Cu-Al and Fe-Al during the phase evolution from RT to 700 °C. The distance between Cu-Cu, however, showed a significant increase from ω-phase at 700 °C to the liquid state at 800 °C, and this distance was maintained after QC formation. Furthermore, the CN of Fe-Al was changed to N = 9 during cooling. Through our observations of changes in CN, atomic distances and the atomic environment, we propose the local structural ordering of the quasicrystalline phase originated from a liquid state via ω-phase. In this study, we give a clear picture of the atomic environment from the crystalline to the quasicrystalline phase during the phase transitions, which provides a better understanding of the synthesis of functional QC nanomaterials.

10.
ACS Omega ; 4(26): 21666-21674, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31891044

RESUMO

Intermetallic compounds have attracted research attention in catalysis because of their unique catalytic properties. Recently, a group of intermetallic compounds, referred to as Heusler alloys (X2YZ), has been investigated as new catalysts. In this study, catalytic properties of 14 Heusler alloys with X = Fe, Co, Ni, or Cu; Y = Ti, Mn, or Fe; Z = Al, Si, Ga, Ge, or Sn for the steam reforming of methanol were examined. Co2TiAl and Ni2TiAl alloys exhibited relatively high H2 production rates because of the formation of fine particles via the selective oxidation of Ti. X2MnZ alloys exhibited high CO2 selectivity because of a water-gas shift reaction catalyzed by using MnO that was formed during the reaction. Crystal phases, surface microstructures, and surface compositions of most alloys were changed because of the reaction, and the formation of fine particles possibly assisted in the observation of catalytic activity. Heusler alloys can be beneficial as catalyst precursors by the selection of appropriate elemental sets depending on target reactions.

11.
Sci Adv ; 4(10): eaat6063, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30345356

RESUMO

Heusler alloys (X 2 YZ) are well-established intermetallic compound materials in various fields because their function can be precisely adjusted by elemental substitution (e.g., X 2 YZ 1-x Z' x ). Although intermetallic compound catalysts started attracting attention recently, catalysis researchers are not familiar with Heusler alloys. We report their potential as novel catalysts focusing on the selective hydrogenation of alkynes. We found that Co2MnGe and Co2FeGe alloys have great alkene selectivity. Mutual substitution of Mn and Fe (Co2Mn x Fe1-x Ge) enhanced the reaction rate without changing selectivity. The substitution of Ga for Ge decreased the selectivity but increased the reaction rate monotonically with Ga composition. Elucidation of these mechanisms revealed that the fine tuning of catalytic properties is possible in Heusler alloys by separately using ligand and ensemble effects of elemental substitution.

12.
J Am Chem Soc ; 140(11): 3838-3841, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29510035

RESUMO

The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al13Fe4, was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al13Fe4. Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al2Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

13.
Inorg Chem ; 57(5): 2908-2916, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29431437

RESUMO

The fcc lattice of porous Cu prepared by dealloying Al2Cu with HCl aqueous solution exhibits a high density of twinning defects with an average domain size of about 3 nm along the ⟨111⟩ directions. The high density of twinning was verified by X-ray diffraction and qualitatively interpreted by a structural model showing the 5% probability of twinning defect formation. Most of the twinning defects disappeared after annealing at 873 K for 24 h. Twinned Cu reveals much faster oxidation rate in comparison to that without (or with much fewer) twinning defects, as shown by X-ray diffraction and hydrogen differential scanning calorimetry. Using ab initio DFT calculations, we demonstrate that twinning defects in porous Cu are able to form nucleation centers for the growth of Cu2O. The geometry of the V-shaped edges on the twinned {211} surfaces is favorable for formation of the basic structural elements of Cu2O. The fast oxidation of porous Cu prepared by dealloying can thus be explained by the fast formation of the Cu2O nucleation centers and their high density.

14.
ACS Omega ; 3(8): 9738, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31465013

RESUMO

[This corrects the article DOI: 10.1021/acsomega.6b00299.].

15.
J Chem Phys ; 147(4): 044713, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28764355

RESUMO

Nanoporous gold (NPG) prepared by de-alloying Al2Au exhibits correlation between the high catalytic reactivity towards CO oxidation and the density of twinning defects in the fcc lattice of NPG. It was also discovered that on the internal surface of NPG, quite common twinning defects can create close-packed rows of six-coordinated catalytically active Au atoms denoted as W-chains. In this work, using density functional theory methods, we investigate energy conditions for formation, thermal stability, and chemical reactivity of these active sites. The possibility of dioxygen chemisorption on various surface sites is studied in detail. A contribution from the dispersion interactions is also considered. The calculated surface density of the active six-coordinated atoms in NPG comparable with that of supported gold nanoparticle catalysts, exothermic chemisorption of dioxygen, and the energy profiles of reaction pathways for CO oxidation indicate that the six-coordinated sites created by twinning can significantly contribute to the catalytic activity of NPG.

16.
ACS Omega ; 2(1): 147-153, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457217

RESUMO

In this study, we investigated the catalytic properties of various Heusler alloys for the hydrogenation of propyne and the oxidation of carbon monoxide. For propyne hydrogenation, Co2FeGe alloy showed a higher activity than that of elemental Co, where neither Fe nor Ge showed any activity. This clearly indicates an alloying effect. For the oxidation of carbon monoxide, although most alloys showed a significant change in catalytic activity during measurement due to an irreversible oxidation of the alloy, Co2TiSn alloy showed a very small change. The results indicate that the catalytic activity and stability of a Heusler alloy can be tuned by employing an appropriate set of elements.

17.
J Chem Phys ; 145(8): 084703, 2016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-27586937

RESUMO

We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al2Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped {211} surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir-Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO-OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy.

18.
J Chem Phys ; 144(3): 034703, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26801039

RESUMO

Three different porous Au catalysts that exhibit high catalytic activity for CO oxidation were prepared by the leaching of Al from an intermetallic compound, Al2Au, with 10 wt. %-NaOH, HNO3, or HCl aqueous solutions. The catalysts were investigated using Brunauer-Emmett-Teller measurements, synchrotron X-ray powder diffraction, hard X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy (TEM). Broad diffraction peaks generated during the leaching process correlated with high activity for all the porous Au catalysts. CO oxidation catalyzed by porous Au leached with NaOH and HNO3 is considered to be dominated by different mechanisms at low (< 320 K) and high (> 370 K) temperatures. Activity in the low-temperature region is mainly attributed to the perimeter interface between residual Al species (AlOx) and porous Au, whereas activity in the high-temperature region results from a high density of lattice defects such as twins and dislocations, which were evident from diffraction peak broadening and were observed with high-resolution TEM in the porous Au leached with NaOH. It is proposed that atoms located at lattice defects on the surfaces of porous Au are the active sites for catalytic reactions.

19.
Microscopy (Oxf) ; 63 Suppl 1: i18-i19, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25359811

RESUMO

Electronic structure of d orbital states in transition metals is a key factor for their physical properties and chemical functions. Copper and intermetallic compound PdZn have good catalysis function for the methanol steam reforming reaction. Tsai et al. showed that from results of XPS measurements the d electronic structure of PdZn was similar with that of copper, and the catalysis function should be related to the d electron states [1]. This similarity of d electronic states leads to another view point of the mechanism for coloring the intermetallic compounds. It is well-known that the characteristic red color of copper is caused by interband transition from the d electrons. Therefore, PdZn and Group X-XII intermetallic compounds are expected to be colored and the optical properties should depend on the d electronic states. In this study, the relations between optical properties and d electron states of Group X-XII intermetallic compounds were investigated by using high energy-resolution electron energy-loss spectroscopy (HR-EELS) based on transmission electron microscopy (TEM). From the relation between optical properties and d electronic states, the mechanism of colored intermetallic compounds will be discussed.Figure shows the optical reflectivity of NiZn, PdZn and PtZn, which were derived from EELS spectra by Kramers-Kronig analysis. Intensity drops (arrows) of the reflectivity were observed in visible energy region. These are caused by the interband transitions from d electronic states. The energy positions of the reflectivity drops have tendency of shifting to higher energy side with increasing atomic number of Group X elements (Ni → Pd → Pt). This indicates that the transition energies of d electrons become larger with the atomic number of the elements. First principle calculations (WIEN2k) confirmed that the interband transitions of d electronic states were excitations from bonding d states to hybrid states of anti-bonding s, p, and d states of Group X elements. The bonding anti-bonding energy split increase with the atomic numbers because of increasing crossover of wave function. This implies the intermetallic compounds should be colored and the color should be changed gradually depending on the atomic number of Group X elements.

20.
Sci Technol Adv Mater ; 15(1): 014801, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877642

RESUMO

A fine layered nanocomposite with a total thickness of about 200 nm was formed on the surface of an Al63Cu25Fe12 quasicrystal (QC). The nanocomposite was found to exhibit high catalytic performance for steam reforming of methanol. The nanocomposite was formed by a self-assembly process, by leaching the Al-Cu-Fe QC using a 5 wt% Na2CO3 aqueous solution followed by calcination in air at 873 K. The quasiperiodic nature of theQC played an important role in the formation of such a structure. Its high catalytic activity originated from the presence of highly dispersed copper and iron species, which also suppressed the sintering of nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...